Menu
June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

De novo assembly and preliminary annotation of the Schizocardium californicum genome

Animals in the phylum Hemichordata have provided key understanding of the origins and development of body patterning and nervous system organization. However, efforts to sequence and assemble the genomes of highly heterozygous non-model organisms have proven to be difficult with traditional short read approaches. Long repetitive DNA structures, extensive structural variation between haplotypes in polyploid species, and large genome sizes are limiting factors to achieving highly contiguous genome assemblies. Here we present the highly contiguous de novo assembly and preliminary annotation of an indirect developing hemichordate genome, Schizocardium californicum, using SMRT Sequening long reads.


June 1, 2021  |  

Characterizing the pan-genome of maize with PacBio SMRT Sequencing

Maize is an amazingly diverse crop. A study in 20051 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide a framework for a pan-genomic approach that can be applied to studies of a wide variety of important crop species.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

Best practices for whole genome sequencing using the Sequel System

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. Here, we recommend the best practices for whole genome sequencing and de novo assembly of complex plant and animal genomes. Guidelines for constructing large-insert SMRTbell libraries (>30 kb) to generate optimal read lengths and yields using the latest Sequel chemistry are presented. We also describe ways to maximize library yield per preparation from as littles as 3 µg of sheared genomic DNA. The combination of these advances makes plant and animal whole genome sequencing a practical application of the Sequel System.


June 1, 2021  |  

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

Background: The Nanobind technology from Circulomics provides an elegant HMW DNA extraction solution for genome sequencing of Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of high molecular weight (HMW) DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be completed in <1 hour for most sample types and can be performed manually or automated with common instruments. Methods:We have validated several critical steps for generating high-quality microbial genome assemblies in a streamlined microbial multiplexing workflow. This new workflow enables high-volume, cost-effective sequencing of up to 16 microbes totaling 30 Mb in genome size on a single SMRT Cell 1M using a target shear size of 10 kb. We also evaluated this method on a pool of four “class 3” microbes that contain >7 kb repeats. Fragment size was increased to ~14 kb, with some fragments >30 kb. Results: Here we present a demonstration of these capabilities using isolates relevant to high-throughput sequencing applications, including common foodborne pathogens (Shigella, Listeria, Salmonella), and species often seen in hospital settings (Klebsiella, Staphylococcus). For nearly all microbes, including difficult-to-assemble class III microbes, we achieved complete de novo microbial assemblies of =5 chromosomal contigs with minimum quality scores of 40 (99.99% accuracy) using data from multiplexed SMRTbell libraries. Each library was sequenced on a single SMRT Cell 1M with the PacBio Sequel System and analyzed with streamlined SMRT Analysis assembly methods. Conclusions: We achieved high-quality, closed microbial genomes using a combination of Circulomics Nanobind extraction and PacBio SMRT Sequencing, along with a newly streamlined workflow that includes automated demultiplexing and push-button assembly.


June 1, 2021  |  

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more contiguous assembled sequences. Two primary methods exist for phased diploid genome assembly. The first, TrioCanu requires Illumina data from parents and PacBio data from the offspring. The long reads from the child are partitioned into maternal and paternal bins using parent-specific sequences; the separate PacBio read bins are then assembled, generating two fully phased genomes. An alternative approach (FALCON-Unzip) does not require parental information and separates PacBio reads, during genome assembly, using heterozygous SNPs. The length of haplotype phase blocks in FALCON-Unzip is limited by the magnitude and distribution of heterozygosity, the length of sequence reads, and read coverage. Because of this, FALCON-Unzip contigs typically contain haplotype-switch errors between phase blocks, resulting in primary contig of mixed parental origin. We developed FALCON-Phase, which integrates Hi-C data downstream of FALCON-Unzip to resolve phase switches along contigs. We applied the method to a human (Puerto Rican, HG00733) and non-human genome assemblies and evaluated accuracy using samples with trio data. In a cattle genome, we observe >96% accuracy in phasing when compared to TrioCanu assemblies as well as parental SNPs. For a high-quality PacBio assembly (>90-fold Sequel coverage) of a Puerto Rican individual we scaffolded the FALCON-Phase contigs, and re-phased the contigs creating a de novo scaffolded, phased diploid assembly with chromosome-scale contiguity.


June 1, 2021  |  

A low DNA input protocol for high-quality PacBio de novo genome assemblies from single invertebrate individuals

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. PacBio is the core technology for many large genome initiatives, however, relatively high DNA input requirements (5 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles coluzzii mosquito and the Schistosoma mansoni parasitic flatworm. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 50-100 ng of starting genomic DNA. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating a range of 21-32 Gb of sequence per SMRT Cell with 20 hour movies, and followed by diploid de novo genome assembly with FALCON-Unzip. The resulting assemblies had high contiguity (contig N50s over 3 Mb for both species) and completeness (as determined by conserved BUSCO gene analysis). We were also able to resolve maternal and paternal haplotypes for 1/3 of the genome in both cases. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. This new low-input approach puts PacBio-based assemblies in reach for small, highly heterozygous organisms that comprise much of the diversity of life. The method presented here can be applied to samples with starting DNA amounts around 100 ng per 250 Mb – 1 Gb genome size.


June 1, 2021  |  

A high-quality de novo genome assembly from a single mosquito using PacBio sequencing

A high-quality reference genome is an essential tool for studies of plant and animal genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. While PacBio is the core technology for many large genome initiatives, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small, non-inbred organisms that may have lower DNA content. Here we present high-quality de novo genome assemblies from single invertebrate individuals for two different species: the Anopheles coluzzii mosquito and the Schistosoma mansoni parasitic flatworm. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 150 ng of starting genomic DNA. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating a range of 21-32 Gb of sequence per SMRT Cell with 20-hour movies (10-12 Gb for 10-hour movies), and followed by diploid de novo genome assembly with FALCON-Unzip. The resulting assemblies had high contiguity (contig N50s over 3 Mb for both species) and completeness (as determined by conserved BUSCO gene analysis). We were also able to resolve maternal and paternal haplotypes for 1/3 of the genome in both cases. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. This new low-input approach puts PacBio-based assemblies in reach for small, highly heterozygous organisms that comprise much of the diversity of life. The method presented here can be applied to samples with starting DNA amounts around 150 ng per 250 Mb – 600 Mb genome size.


June 1, 2021  |  

Streamlines SMRTbell library generation using addition-only, single tube strategy for all library types reduces time to results

We have streamlined the SMRTbell library generation protocols with improved workflows to deliver seamless end-to-end solutions from sample to analysis. A key improvement is the development of a single-tube reaction strategy that shortened hands-on time needed to generate each SMRTbell library, reduced time-consuming AM Pure purification steps, and minimized sample-handling induced gDNA damage to improve the integrity of long-insert SMRTbell templates for sequencing. The improved protocols support all large-insert genomic libraries, multiplexed microbial genomes, and amplicon sequencing. These advances enable completion of library preparation in less than a day (approximately 4 hours) and opens opportunities for automated library preparation for large-scale projects. Here we share data summarizing performance of the new SMRTbell Express Template Kit 2.0 representing our solutions for 10 kb and >50 kb large-insert genomic libraries, complete microbial genome assemblies, and high-throughput amplicon sequencing. The improved throughput of the Sequel System with read lengths up to 30 kb and high consensus accuracy (> 99.999% accuracy) makes sequencing with high-quality results increasingly assessible to the community.


June 1, 2021  |  

A low DNA input protocol for high-quality PacBio de novo genome assemblies

A high-quality reference genome is an essential tool for studying the genetics of traits and disease, organismal, comparative and conservation biology, and population genomics. PacBio Single Molecule, Real-Time (SMRT) Sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives. However, relatively high DNA input requirements (3 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that may have lower DNA content or on projects with limited input DNA for other reasons. Here we present a modified SMRTbell library construction protocol without DNA shearing or size selection that can be used to generate a SMRTbell library from just 150 ng of starting genomic DNA. Remarkably, the protocol enables high quality de novo assemblies from single invertebrate individuals and is applied to taxonomically diverse samples. By sequencing and assembling material from a single diploid individual, only two haplotypes are present, simplifying the assembly process compared to samples from multiple pooled individuals. The libraries were run on the Sequel System with chemistry v3.0 and software v6.0, generating ~11 Gb of sequence per SMRT Cell with 10 hour movies, and followed by de novo genome assembly with FALCON. The resulting assemblies had high contiguity (contig N50s over 1 Mb) and completeness (as determined by conserved BUSCO gene analysis) when at least 30-fold unique molecular coverage is obtained. This new low-input approach now puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life. The method presented here is scalable and can be applied to samples with starting DNA amounts of 150 ng per 300 Mb genome size.


June 1, 2021  |  

High-quality human genomes achieved through HiFi sequence data and FALCON-Unzip assembly

De novo assemblies of human genomes from accurate (85-90%), continuous long reads (CLR) now approach the human reference genome in contiguity, but the assembly base pair accuracy is typically below QV40 (99.99%), an order-of-magnitude lower than the standard for finished references. The base pair errors complicate downstream interpretation, particularly false positive indels that lead to false gene loss through frameshifts. PacBio HiFi sequence data, which are both long (>10 kb) and very accurate (>99.9%) at the individual sequence read level, enable a new paradigm in human genome assembly. Haploid human assemblies using HiFi data achieve similar contiguity to those using CLR data and are highly accurate at the base level1. Furthermore, HiFi assemblies resolve more high-identity sequences such as segmental duplications2. To enable HiFi assembly in diploid human samples, we have extended the FALCON-Unzip assembler to work directly with HiFi reads. Here we present phased human diploid genome assemblies from HiFi sequencing of HG002, HG005, and the Vertebrate Genome Project (VGP) mHomSap1 trio on the PacBio Sequel II System. The HiFi assemblies all exceed the VGP’s quality guidelines, approaching QV50 (99.999%) accuracy. For HG002, 60% of the genome was haplotype-resolved, with phase-block N50 of 143Kbp and phasing accuracy of 99.6%. The overall mean base accuracy of the assembly was QV49.7. In conclusion, HiFi data show great promise towards complete, contiguous, and accurate diploid human assemblies.


June 1, 2021  |  

Beyond Contiguity: Evaluating the accuracy of de novo genome assemblies

HiFi reads (>99% accurate, 15-20 kb) from the PacBio Sequel II System consistently provide complete and contiguous genome assemblies. In addition to completeness and contiguity, accuracy is of critical importance, as assembly errors complicate downstream analysis, particularly by disrupting gene frames. Metrics used to assess assembly accuracy include: 1) in-frame gene count, 2) kmer consistency, and 3) concordance to a benchmark, where discordances are interpreted as assembly errors. Genome in a Bottle (GIAB) provides a benchmark for the human genome with estimated accuracy of 99.9999% (Q60). Concordance for human HiFi assemblies exceeds Q50, which provides excellent genomes for downstream analysis, but presents a challenge that any new benchmark must significantly exceed Q50 or the discordance will represent the error rate of the benchmark. To establish benchmarks for Oryza sativa and Drosophila melanogaster, we collected draft references, Illumina short reads, and PacBio HiFi reads. By species, the benchmark was defined as regions of normal coverage that are not within 5 bp of a small variant or 50 bp of a structural variant. For both species, the benchmark regions span around 60% of the genome and HiFi assemblies achieve Q50 accuracy, which is notably more accurate than assemblies with other technologies and meets typical standards for a finished, reference-grade assembly. Here we present a protocol to generate benchmarks for any sample that rival the GIAB benchmark in accuracy. These benchmarks allow the comparison and improvement of genome assemblies and highlight the superior accuracy of assemblies generated with PacBio HiFi reads.


June 1, 2021  |  

A complete solution for high-quality genome annotation using the PacBio Iso-Seq method

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. We describe here the full Iso-Seq ecosystem that enables researchers to achieve high-quality genome annotations. The Iso-Seq Express workflow is a 1-day protocol that requires only 60-300 ng of total RNA and supports multiplexing of different tissues. Sequencing on a single SMRT Cell 8M on the Sequel II System produces up to 4 million full-length reads, sufficient to exhaustively characterize a whole transcriptome on the order of 15,000-17,000 genes with 100,000 or more transcripts. Most importantly, the method is supported by a maturing suite of official and community-developed tools. The SMRT Link Iso-Seq application outputs high-quality (>99% accurate), full-length transcript sequences that can optionally be mapped to a reference genome for a single SMRT Cell worth of data in 6-9 hours. For example, the SQANTI2 tool classifies Iso-Seq transcripts against a reference annotation, filters potential library artifacts, and processes information from both long read-only and short read-based quantification. IsoPhase is a tool for identifying allele-specific isoform expression. Cogent has been used to process Iso-Seq transcripts in a genome-independent manner to assess genome assemblies. Finally, IsoAnnot is an up-and-coming tool for identifying differential isoform expression across different samples. We describe how these tools complement each other and provide guidelines to make the best use out of Iso-Seq data for understanding transcriptomes.


June 1, 2021  |  

New advances in SMRT Sequencing facilitate multiplexing for de novo and structural variant studies

The latest advancements in Sequel II SMRT Sequencing have increased average read lengths up to 50% compared to Sequel II chemistry 1.0 which allows multiplexing of 2-3 small organisms (<500 Mb) such as insects and worms for producing reference quality assemblies, calling structural variants for up to 2 samples with ~3 Gb genomes, analysis of 48 microbial genomes, and up to 8 communities for metagenomic profiling in a single SMRT Cell 8M. With the improved processivity of the new Sequel II sequencing polymerase, more SMRTbell molecules reach rolling circle mode resulting in longer overall read lengths, thus allowing efficient detection of barcodes (up to 80%) in the SMRTbell templates. Multiplexing of genomes larger than microbial organisms is now achievable. In collaboration with the Wellcome Sanger Institute, we have developed a workflow for multiplexing two individual Anopheles coluzzii using as low as 150 ng genomic DNA per individual. The resulting assemblies had high contiguity (contig N50s over 3 Mb) and completeness (>98% of conserved genes) for both individuals. For microbial multiplexing, we multiplexed 48 microbes with varying complexities and sizes ranging 1.6-8.0 Mb in single SMRT Cell 8M. Using a new end-to-end analysis (Microbial Assembly Analysis, SMRT Link 8.0), assemblies resulted in complete circularized genomes (>200-fold coverage) and efficient detection of >3-200 kb plasmids. Finally, the long read lengths (>90 kb) allows detection of barcodes in large insert SMRTbell templates (>15 kb) thus facilitating multiplex of two human samples in 1 SMRT Cell 8M for detecting SVs, Indels and CNVs. Here, we present results and describe workflows for multiplexing samples for specific applications for SMRT Sequencing.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.