Menu
April 21, 2020  |  

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


April 21, 2020  |  

Genome Sequence of a California Isolate of Fusarium oxysporum f. sp. lycopersici Race 3, a Fungus Causing Wilt Disease on Tomato.

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978?bp (GC content, 47.5%), an N50 of 4,408,267?bp, a mean read coverage of 99.8×, and 17,682 predicted genes. Copyright © 2019 Henry et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020  |  

Complete Genome Sequence of Halorubrum ezzemoulense Strain Fb21.

Isolated from Aran-Bidgol Lake in Iran, and reported here, Halorubrum ezzemoulense strain Fb21 represents the first complete genome from this archaeal species. Local recombination in this genome is in stark contrast to equidistant recombination events in bacteria. The genome’s GC bias, however, points to a genome architecture and origin that resemble those of a bacterium. Its availability, genome signatures, and frequent intragenomic recombination mean that Fb21 presents an attractive model organism for this species. Copyright © 2019 Feng et al.


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT.

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Dual Role of gnaA in Antibiotic Resistance and Virulence in Acinetobacter baumannii.

Acinetobacter baumannii is an important Gram-negative pathogen in hospital-related infections. However, treatment options for A. baumannii infections have become limited due to multidrug resistance. Bacterial virulence is often associated with capsule genes found in the K locus, many of which are essential for biosynthesis of the bacterial envelope. However, the roles of other genes in the K locus remain largely unknown. From an in vitro evolution experiment, we obtained an isolate of the virulent and multidrug-resistant A. baumannii strain MDR-ZJ06, called MDR-ZJ06M, which has an insertion by the ISAba16 transposon in gnaA (encoding UDP-N-acetylglucosamine C-6 dehydrogenase), a gene found in the K locus. The isolate showed an increased resistance toward tigecycline, whereas the MIC decreased in the case of carbapenems, cephalosporins, colistin, and minocycline. By using knockout and complementation experiments, we demonstrated that gnaA is important for the synthesis of lipooligosaccharide and capsular polysaccharide and that disruption of the gene affects the morphology, drug susceptibility, and virulence of the pathogen.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China.

Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization.Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Survey of the Bradysia odoriphaga Transcriptome Using PacBio Single-Molecule Long-Read Sequencing.

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


April 21, 2020  |  

Identification of Initial Colonizing Bacteria in Dental Plaques from Young Adults Using Full-Length 16S rRNA Gene Sequencing.

Development of dental plaque begins with the adhesion of salivary bacteria to the acquired pellicle covering the tooth surface. In this study, we collected in vivo dental plaque formed on hydroxyapatite disks for 6 h from 74 young adults and identified initial colonizing taxa based on full-length 16S rRNA gene sequences. A long-read, single-molecule sequencer, PacBio Sequel, provided 100,109 high-quality full-length 16S rRNA gene sequence reads from the early plaque microbiota, which were assigned to 90 oral bacterial taxa. The microbiota obtained from every individual mostly comprised the 21 predominant taxa with the maximum relative abundance of over 10% (95.8?±?6.2%, mean ± SD), which included Streptococcus species as well as nonstreptococcal species. A hierarchical cluster analysis of their relative abundance distribution suggested three major patterns of microbiota compositions: a Streptococcus mitis/Streptococcus sp. HMT-423-dominant profile, a Neisseria sicca/Neisseria flava/Neisseria mucosa-dominant profile, and a complex profile with high diversity. No notable variations in the community structures were associated with the dental caries status, although the total bacterial amounts were larger in the subjects with a high number of caries-experienced teeth (=8) than in those with no or a low number of caries-experienced teeth. Our results revealed the bacterial taxa primarily involved in early plaque formation on hydroxyapatite disks in young adults.IMPORTANCE Selective attachment of salivary bacteria to the tooth surface is an initial and repetitive phase in dental plaque development. We employed full-length 16S rRNA gene sequence analysis with a high taxonomic resolution using a third-generation sequencer, PacBio Sequel, to determine the bacterial composition during early plaque formation in 74 young adults accurately and in detail. The results revealed 21 bacterial taxa primarily involved in early plaque formation on hydroxyapatite disks in young adults, which include several streptococcal species as well as nonstreptococcal species, such as Neisseria sicca/Nflava/Nmucosa and Rothia dentocariosa Given that no notable variations in the microbiota composition were associated with the dental caries status, the maturation process, rather than the specific bacterial species that are the initial colonizers, is likely to play an important role in the development of dysbiotic microbiota associated with dental caries. Copyright © 2019 Ihara et al.


April 21, 2020  |  

The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition.

Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits.We obtained >187.22 and 178.87 gigabases of sequence, and ~288× and 248× genome coverage, to a pecan cultivar (“Pawnee”) and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives.Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

A draft nuclear-genome assembly of the acoel flatworm Praesagittifera naikaiensis.

Acoels are primitive bilaterians with very simple soft bodies, in which many organs, including the gut, are not developed. They provide platforms for studying molecular and developmental mechanisms involved in the formation of the basic bilaterian body plan, whole-body regeneration, and symbiosis with photosynthetic microalgae. Because genomic information is essential for future research on acoel biology, we sequenced and assembled the nuclear genome of an acoel, Praesagittifera naikaiensis.To avoid sequence contamination derived from symbiotic microalgae, DNA was extracted from embryos that were free of algae. More than 290x sequencing coverage was achieved using a combination of Illumina (paired-end and mate-pair libraries) and PacBio sequencing. RNA sequencing and Iso-Seq data from embryos, larvae, and adults were also obtained. First, a preliminary ~17-kilobase pair (kb) mitochondrial genome was assembled, which was deleted from the nuclear sequence assembly. As a result, a draft nuclear genome assembly was ~656 Mb in length, with a scaffold N50 of 117 kb and a contig N50 of 57 kb. Although ~70% of the assembled sequences were likely composed of repetitive sequences that include DNA transposons and retrotransposons, the draft genome was estimated to contain 22,143 protein-coding genes, ~99% of which were substantiated by corresponding transcripts. We could not find horizontally transferred microalgal genes in the acoel genome. Benchmarking Universal Single-Copy Orthologs analyses indicated that 77% of the conserved single-copy genes were complete. Pfam domain analyses provided a basic set of gene families for transcription factors and signaling molecules.Our present sequencing and assembly of the P. naikaiensis nuclear genome are comparable to those of other metazoan genomes, providing basic information for future studies of genic and genomic attributes of this animal group. Such studies may shed light on the origins and evolution of simple bilaterians. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.