Menu
September 22, 2019  |  

Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae.

The bacterial community of the small intestine is a key factor that has strong influence on the health of gastrointestinal tract (GIT) in mammals during and shortly after weaning. The aim of this study was to analyze the effects of the diets of supplemented with epidermal growth factor (EGF)-expressed Saccharomyces cerevisiae (S. cerevisiae) on the duodenal microbiotas of weaned piglets.Revealed in this study, at day 7, 14 and 21, respectively, the compositional sequencing analysis of the 16S rRNA in the duodenum had no marked difference in microbial diversity from the phylum to species levels between the INVSc1(EV) and other recombinant strains encompassing INVSc1-EE(+), INVSc1-TE(-), and INVSc1-IE(+). Furthermore, the populations of potentially enterobacteria (e.g., Clostridium and Prevotella) and probiotic (e.g., Lactobacilli and Lactococcus) also remained unchanged among recombinant S. cerevisiae groups (P?>?0.05). However, the compositional sequencing analysis of the 16S rRNA in the duodenum revealed significant difference in microbial diversity from phylum to species levels between the control group and recombinant S. cerevisiae groups. In terms of the control group (the lack of S. cerevisiae), these data confirmed that dietary exogenous S. cerevisiae had the feasibility to be used as a supplement for enhancing potentially probiotic (e.g., Lactobacilli and Lactococcus) (P?


September 22, 2019  |  

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the various long-read methods. We discuss their applications and their respective strengths and weaknesses and provide future perspectives. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing.

A simultaneous nitrification, denitrification and organic matter removal (SNDOR) process in sequencing batch biofilm reactor (SBBR) was established to treat saline mustard tuber wastewater (MTWW) in this study. An average COD removal efficiency of 86.48% and total nitrogen removal efficiency of 86.48% were achieved at 30gNaClL(-1) during 100days’ operation. The underlying mechanisms were investigated by PacBio SMRT DNA sequencing (V1-V9) to analyze the microbial community structures and its variation from low salinity at 10gNaClL(-1) to high salinity at 30gNaClL(-1). Results showed elevated salinity did not affect biological performance but reduced microbial diversity in SBBR, and halophilic bacteria gradually predominated by succession. Despite of high C/N, autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas and ammonia-oxidizing archaea (AOA) Candidatus Nitrososphaera both contributed to ammonium oxidation. As salinity increasing, nitrite-oxidizing bacteria (NOB) were significantly inhibited, partial nitrification and denitrification (PND) process gradually contributed to nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Koumiss consumption alleviates symptoms of patients with chronic atrophic gastritis: A possible link To modulation of gut microbiota

Intestinal dysbiosisis closely related to a variety of medical conditions, especially gastrointestinal diseases. The present study aimed to investigate the effects of koumiss on chronic atrophic gastritis (CAG) in an out-patient clinical trial (n = 10; all female subjects aged 41-55; body mass index ranging from 19.5 to 25.8). Each patient consumed three servings of koumiss per day (i.e. 250 ml daily before each of 3 meals) for a 60-day period. The improvement of patients’ symptoms was monitored by comparing the total scores of symptoms before and after the treatment. Meanwhile, the changes in the patients’ fecal microbiota composition and specific blood parameters were determined. After the 60-day koumiss administration, significant symptom improvements were observed, as evidenced by the reduction of the total symptoms score, and changes in blood platelet and cholesterol levels. The changes in patients’ fecal microbiota composition were found. The patients’ fecal microbiota fell into two distinct enterotypes, Bacteroides dorei/ Bacteroides uniformis (BB-enterotype) and Prevotella copri (P-enterotype). Significant less Bacteroides uniformis was found in the BB-enterotype patient group, while significant more butyrate-producing bacteria (e.g. Eubacterium rectale and Faecalibacterium prausnitzii) were found in the P-enterotype patient group, following koumiss administration. After stopping koumiss consumption, the relative abundance of some biomarker taxa returned to the original level, suggesting that the gut microbiota modulatory effect was not permanent and that continuous koumiss administration was required to maintain the therapeutic effect. In conclusion, koumiss consumption could alleviate the symptoms of CAG patients. Our results may help understand the mechanism of koumiss in alleviating CAG disease symptoms, facilitating the development of such products with desired therapeutic functions.


September 22, 2019  |  

Effects of metal and metalloid pollutants on the microbiota composition of feces obtained from twelve commercial pig farms across China.

Understanding the metal and metalloid contamination and microbiota composition of pig feces is an important step required to support the design and implementation of effective pollution control and prevention strategies. A survey was implemented in 12 locations across China to investigate the content of metals and metalloids, and the main composition of the microbial communities of commercially reared pigs during two growth periods, defined as the early (Q group) and the later fattening growth phases (H group). These data showed widespread Al, Mn, Cu, Zn, and Fe pollution in pig feces. The concentration of Zn in the Q group feces was nearly two times higher than the levels measured in the H group. The microbial composition of the Q group exhibited greater richness of operational taxonomic units (OTUs) and fewer bacteria associated with zoonotic diseases compared with the microbial composition of the H group. Spearman rank correlation analysis showed that Cu and northern latitudes had a significant positive effect on the richness of bacterial communities in pig feces. Zn and Cd exhibited the biggest impact on microbial community composition based on canonical correspondence analysis. Functional metagenomic prediction indicated that about 0.8% genes present in the pig feces bacteria community are related to human diseases, and significantly more predicted pathogenic genes were detected in the H group than in the Q group. These results support the need to monitor heavy metal contamination and to control for zoonotic pathogens disseminated from pig feces in Chinese pig farms. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Using PacBio long-read high-throughput microbial gene amplicon sequencing to evaluate infant formula safety.

Infant formula (IF) requires a strict microbiological standard because of the high vulnerability of infants to foodborne diseases. The current study used the PacBio single molecule real-time (SMRT) sequencing platform to generate full-length 16S rRNA-based bacterial microbiota profiles of thirty Chinese domestic and imported IF samples. A total of 600 species were identified, dominated by Streptococcus thermophilus, Lactococcus lactis and Lactococcus piscium. Distinctive bacterial profiles were observed between the two sample groups, as confirmed with both principal coordinate analysis and multivariate analysis of variance. Moreover, the product whey protein nitrogen index (WPNI), representing the degree of preheating, negatively correlated with the relative abundances of the Bacillus genus. Our study has demonstrated the application of the PacBio SMRT sequencing platform in assessing the bacterial contamination of IF products, which is of interest to the dairy industry for effective monitoring of microbial quality and safety during production.


September 22, 2019  |  

Analysis of microbial community structure of pit mud for Chinese strong-flavor liquor fermentation using next generation DNA sequencing of full-length 16S rRNA

The pit is the necessary bioreactor for brewing process of Chinese strong-flavor liquor. Pit mud in pits contains a large number of microorganisms and is a complex ecosystem. The analysis of bacterial flora in pit mud is of great significance to understand liquor fermentation mechanisms. To overcome taxonomic limitations of short reads in 16S rRNA variable region sequencing, we used high-throughput DNA sequencing of near full-length 16S rRNA gene to analyze microbial compositions of different types of pit mud that produce different qualities of strong-flavor liquor. The results showed that the main species in pit mud were Pseudomonas extremaustralis 14-3, Pseudomonas veronii, Serratia marcescens WW4, and Clostridium leptum in Ruminiclostridium. The microbial diversity of pit mud with different quality was significantly different. From poor to good quality of pit mud (thus the quality of liquor), the relative abundances of Ruminiclostridium and Syntrophomonas in Firmicutes was increased, and the relative abundance of Olsenella in Actinobacteria also increased, but the relative abundances of Pseudomonas and Serratia in Proteobacteria were decreased. The surprising findings of this study include that the diversity of intermediate level quality of N pit mud was the lowest, and the diversity levels of high quality pit mud G and poor quality pit mud B were similar. Correlation analysis showed that there were high positive correlations (r > 0.8) among different microbial groups in the flora. Based on the analysis of the microbial structures of pit mud in different quality, the good quality pit mud has a higher microbial diversity, but how this higher diversity and differential microbial compositions contribute to better quality of liquor fermentation remains obscure.


September 22, 2019  |  

Biogas production from hydrothermal liquefaction wastewater (HTLWW): Focusing on the microbial communities as revealed by high-throughput sequencing of full-length 16S rRNA genes.

Hydrothermal liquefaction (HTL) is an emerging and promising technology for the conversion of wet biomass into bio-crude, however, little attention has been paid to the utilization of hydrothermal liquefaction wastewater (HTLWW) with high concentration of organics. The present study investigated biogas production from wastewater obtained from HTL of straw for bio-crude production, with focuses on the analysis of the microbial communities and characterization of the organics. Batch experiments showed the methane yield of HTLWW (R-HTLWW) was 184 mL/g COD, while HTLWW after petroleum ether extraction (PE-HTLWW), to extract additional bio-crude, had higher methane yield (235 mL/g COD) due to the extraction of recalcitrant organic compounds. Sequential batch experiments further demonstrated the higher methane yield of PE-HTLWW. LC-TOF-MS, HPLC and gel filtration chromatography showed organics with molecular weight (MW) < 1000 were well degraded. Results from the high-throughput sequencing of full-length 16S rRNA genes analysis showed similar microbial community compositions were obtained for the reactors fed with either R-HTLWW or PE-HTLWW. The degradation of fatty acids were related with Mesotoga infera, Syntrophomonas wolfei et al. by species level identification. However, the species related to the degradation of other compounds (e.g. phenols) were not found, which could be due to the presence of uncharacterized microorganisms. It was also found previously proposed criteria (97% and 98.65% similarity) for species identification of 16S rRNA genes were not suitable for a fraction of 16S rRNA genes. Copyright © 2016 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq.Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 16S rRNA gene datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset.The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454 sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing.


September 22, 2019  |  

Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer’s disease (AD) and Parkinson’s disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO also instigates a down-regulated secretion of brain-derived neurotrophic factor, which is essential for neuronal survival, development and differentiation, synaptogenesis, and learning and memory. The gut-brain axis denotes communication between the enteric nervous system (ENS) of the GI tract and the central nervous system (CNS) of the brain, and the modes of communication include the vagus nerve, passive diffusion and carrier by oxyhemoglobin. Amyloid precursor protein that forms amyloid beta plaques in AD is normally expressed in the ENS by gut bacteria, but when amyloid beta accumulates, it compromises CNS functions. Escherichia coli and Salmonella enterica are among the many bacterial strains that express and secrete amyloid proteins and contribute to AD pathogenesis. Gut microbiota is essential for regulating microglia maturation and activation, and activated microglia secrete significant amounts of iNOS. Pharmacological interventions and lifestyle modifications to rectify aberrant NO signaling in AD include NOS inhibitors, NMDA receptor antagonists, potassium channel modulators, probiotics, diet, and exercise.


September 22, 2019  |  

Long-read, Single Molecule, Real-Time (SMRT) DNA Sequencing for metagenomic applications

In this chapter, we describe applications of single molecule, real-time (SMRT) DNA sequencing toward metagenomic research. The long sequence reads, combined with a lack of bias with respect to DNA sequence context or GC content, facilitate a more comprehensive analysis of the genomic constitution of microbial communities. Full-length 16S RNA gene sequencing at high (>99%) accuracy allows for species-level characterization of community members concomitant with the determination of community structure. The application of SMRT sequencing to whole-community shotgun microbial metagenomics has also been discussed.


September 22, 2019  |  

Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation.

A microbial bioremediation product (MBP) used for large-scale oil degradation was investigated for microbial constituents and possible pathogenicity. Aerobic growth on various media yielded >108 colonies mL-1. Full-length 16S rDNA sequencing and fatty acid profiling from morphologically distinct colonies revealed =13 distinct genera. Full-length 16S rDNA library sequencing, by either Sanger or long-read PacBio technology, suggested that up to 21% of the MBP was composed of Arcobacter. Other high abundance microbial constituents (>6%) included the genera Proteus, Enterococcus, Dysgonomonas and several genera in the order Bacteroidales. The MBP was most susceptible to ciprofloxacin, doxycycline, gentamicin, and meropenam. MBP exposure of human HT29 and A549 cells caused significant cytotoxicity, and bacterial growth and adherence. An acellular MBP filtrate was also cytotoxic to HT29, but not A549. Both MBP and filtrate exposures elevated the neutrophil chemoattractant IL-8. In endotracheal murine exposures, bacterial pulmonary clearance was complete after one-week. Elevation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-a, and chemokines KC and MCP-1 occurred between 2h and 48h post-exposure, followed by restoration to baseline levels at 96h. Cytokine/chemokine signalling was accompanied by elevated blood neutrophils and monocytes at 4h and 48h, respectively. Peripheral acute phase response markers were maximal at 24h. All indicators examined returned to baseline values by 168h. In contrast to HT29, but similar to A549 observations, MBP filtrate did not induce significant murine effects with the indicators examined. The results demonstrated the potentially complex nature of MBPs and transient immunological effects during exposure. Products containing microbes should be scrutinized for pathogenic components and subjected to characterisation and quality validation prior to commercial release.


September 22, 2019  |  

Identification of microbial profile of Koji using Single Molecule, Real-Time Sequencing technology.

Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples.© 2017 Institute of Food Technologists®.


September 22, 2019  |  

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


September 22, 2019  |  

The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows

Probiotics administration can improve host health. This study aims to determine the effects of probiotics (Lactobacillus casei Zhang and Lactobacillus plantarum P-8) administration on milk production, milk functional components, milk composition, and fecal microbiota of dairy cows. Variations in the fecal bacteria microbiota between treatments were assessed based on 16S rRNA profiles determined by PacBio single molecule real-time sequencing technology. The probiotics supplementation significantly increased the milk production and the contents of milk immunoglobulin G (IgG), lactoferrin (LTF), lysozyme (LYS) and lactoperoxidase (LP), while the somatic cell counts (SCC) significantly decreased (P < 0.01). However, no significant difference was found in the milk fat, protein and lactose contents (P > 0.05). Although the probiotics supplementation did not change the fecal bacteria richness and diversity, significantly more rumen fermentative bacteria (Bacteroides, Roseburia, Ruminococcus, Clostridium, Coprococcus and Dorea) and beneficial bacteria (Faecalibacterium prausnitzii) were found in the probiotics treatment group. Meanwhile, some opportunistic pathogens e.g. Bacillus cereus, Cronobacter sakazakii and Alkaliphilus oremlandii, were suppressed. Additionally, we found some correlations between the milk production, milk components and fecal bacteria. To sum up, our study demonstrated the beneficial effects of probiotics application in improving the quality and quantity of cow milk production.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.