Menu
July 7, 2019

Common cell shape evolution of two nasopharyngeal pathogens.

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.


July 7, 2019

Whole-genome mapping as a novel high-resolution typing tool for Legionella pneumophila.

Legionella is the causative agent for Legionnaires’ disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ?metA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ?metA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ?metA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.


July 7, 2019

A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii.

Infections with Acinetobacter baumannii, one of the most troublesome and least studied multidrug-resistant superbugs, are increasing at alarming rates. A. baumannii encodes a type VI secretion system (T6SS), an antibacterial apparatus of Gram-negative bacteria used to kill competitors. Expression of the T6SS varies among different strains of A. baumannii, for which the regulatory mechanisms are unknown. Here, we show that several multidrug-resistant strains of A. baumannii harbor a large, self-transmissible resistance plasmid that carries the negative regulators for T6SS. T6SS activity is silenced in plasmid-containing, antibiotic-resistant cells, while part of the population undergoes frequent plasmid loss and activation of the T6SS. This activation results in T6SS-mediated killing of competing bacteria but renders A. baumannii susceptible to antibiotics. Our data show that a plasmid that has evolved to harbor antibiotic resistance genes plays a role in the differentiation of cells specialized in the elimination of competing bacteria.


July 7, 2019

Identification and structural characterization of naturally-occurring broad-spectrum cyclic antibiotics isolated from Paenibacillus.

The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MS(n) spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.


July 7, 2019

Draft genome sequence of Paenibacillus polymyxa strain Mc5Re-14, an antagonistic root endophyte of Matricaria chamomilla.

Paenibacillus polymyxa strain Mc5Re-14 was isolated from the inner root tissue of Matricaria chamomilla (German chamomile). Mc5Re-14 revealed promising in vitro antagonistic activity against plant and opportunistic human pathogens. The 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion. Copyright © 2015 Köberl et al.


July 7, 2019

Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae.

Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology.In this study, the high error rate of PacBio long sequence reads of A. comosus’s total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus.The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.


July 7, 2019

Retrohoming of a mobile group II intron in human cells suggests how eukaryotes limit group II intron proliferation.

Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the evolution of introns and gene expression mechanisms.


July 7, 2019

Comparative genomics and characterization of hybrid Shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) strains.

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.


July 7, 2019

Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3.

Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.


July 7, 2019

Mutation assay using single-molecule real-time (SMRT) sequencing technology

Introduction We present here a simple, phenotype-independent mutation assay using a PacBio RSII DNA sequencer employing single-molecule real-time (SMRT) sequencing technology. Salmonella typhimurium YG7108 was treated with the alkylating agent N-ethyl-N-nitrosourea (ENU) and grown though several generations to fix the induced mutations, the DNA was extracted and the mutations were analyzed by using the SMRT DNA sequencer. Results The ENU-induced base-substitution frequency was 15.4 per Megabase pair, which is highly consistent with our previous results based on colony isolation and next-generation sequencing. The induced mutation spectrum (95% G:C???A:T, 5% A:T???G:C) is also consistent with the known ENU signature. The base-substitution frequency of the control was calculated to be less than 0.12 per Megabase pair. A current limitation of the approach is the high frequency of artifactual insertion and deletion mutations it detects. Conclusions Ultra-low frequency base-substitution mutations can be detected directly by using the SMRT DNA sequencer, and this technology provides a phenotype-independent mutation assay.


July 7, 2019

Complete genome sequencing of Pandoraea pnomenusa RB38 and molecular characterization of its N-acyl homoserine lactone synthase gene ppnI.

In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.