Menu
July 7, 2019  |  

Short genome report of cellulose-producing commensal Escherichia coli 1094.

Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage in several E. coli strains. Data deposition: The annotated genome sequence has been deposited at the European Nucleotide Archive under the accession number PRJEB21000.


July 7, 2019  |  

Complete genome sequence of “Thiodictyon syntrophicum” sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno.

Thiodictyon syntrophicum sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.


July 7, 2019  |  

Complete genome sequence of Gordonia sp. YC-JH1, a bacterium efficiently degrading a wide range of phthalic acid esters.

Phthalic acid esters (PAEs) are a family of recalcitrant pollutants mainly used as plasticizer. The strain Gordonia sp.YC-JH1, isolated from petroleum-contaminated soil, is capable of efficiently degrading a wide range of PAEs. In order to pertinently investigate the genetic mechanism of PAEs catabolism by strain YC-JH1, its complete genome sequencing has been performed by SMRT sequencing technology. The genome comprises a circular chromosome and a plasmid with a size of 4,101,557 bp and 91,767 bp respectively. Based on the genome sequence, 3563 protein-coding genes are predicted, of which the genes responsible for PAEs degradation are identified, including the two genes of PAEs hydrolase and the gene clusters for phthalic acid and protocatechuic acid degradation. The genome information provides genomic basis of PAEs degradation to allow the complete metabolism of PAEs. The wide substrate spectrum and its genetic basis of this strain should expand its application potential for environments bioremediation, provide novel gene resources involved in PAEs degradation for biotechnology and gene engineering, and contribute to shed light on the mechanism of PAEs metabolism. Copyright © 2018. Published by Elsevier B.V.


July 7, 2019  |  

Complete and assembled genome sequence of an NDM-9- and CTX-M-15-producing Klebsiella pneumoniae ST147 wastewater isolate from Switzerland.

Carbapenem-resistant Klebsiella pneumoniae have emerged worldwide and represent a major threat to human health. Here we report the genome sequence of K. pneumoniae 002SK2, an NDM-9- and CTX-M-15-producing strain isolated from wastewater in Switzerland and belonging to the international high-risk clone sequence type 147 (ST147).Whole-genome sequencing of K. pneumoniae 002SK2 was performed using Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was performed using Canu assembler, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of K. pneumoniae 002SK2 consists of a 5.4-Mbp chromosome containing blaSHV-11 and fosA6, a 159-kb IncFIB(K) plasmid carrying the heavy metal resistance genes ars and sil, and a 77-kb IncR plasmid containing blaCTX-M-15, blaNDM-9, blaOXA-9 and blaTEM-1.Multidrug-resistant K. pneumoniae harbouring blaNDM-9 and blaCTX-M-15 are spreading into the environment, most probably via wastewater from clinical settings. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Probiotic genomes: Sequencing and annotation in the past decade

Probiotics are live microorganisms that confer many health benefits to the host when administered in adequate quantities. These health benefits have garnered much attention towards Probiotics and have given an impetus to their use as dietary supplements for the improvement of general health and as adjuvant therapies for certain diseases. The increased demand for probiotic products in the recent times has provided the thrust for probiotic research applied to several areas of human biology. The advances in genomic technologies have further facilitated the sequencing of the genomes of such probiotic bacteria and their genomic analyses to identify the genes that endow the beneficial effects they are known to exert. This work reviews the application of genomic strategies on probiotic bacteria, while providing the details about the probiotic strains whose genome sequences are available. It also consolidates the Genomic tools used for the sequencing, assembly and annotation of the probiotic genes and how it has helped in comparative genomic analyses.


July 7, 2019  |  

Thauera sinica sp. nov., a phenol derivative-degrading bacterium isolated from activated sludge.

A bacterial strain, K11T, capable of degrading phenol derivatives was isolated from activated sludge of a sewage treatment plant in China. This strain, which can degrade more than ten phenol derivatives, was identified as a Gram-stain negative, rod-shaped, asporogenous, facultative anaerobic bacterium with a polar flagellum. The strain was found to grow in tryptic soy broth in the presence of 0-2.5% (w/v) NaCl (optimum 0-1%), at 4-43 °C (optimum 30-35 °C) and pH 4.5-10.5 (optimum 7.5-8). Comparative analysis of nearly full-length 16S rRNA gene sequences showed that this strain belongs to the genus Thauera. The 16S rRNA gene sequence was found to show high similarity (97.5%) to that of Thauera chlorobenzoica 3CB-1T, with lesser similarity to other recognised Thauera strains. The G+C content of the DNA of the strain was determined to be 67.8 mol%. The DNA-DNA hybridization value between K11T and Thauera aromatica DSM6984T was 10.4 ± 4.5%. The genomic OrthoANI values of K11T with the other nine type strains of genus Thauera were less than 81.1%. Chemotaxonomic analysis of strain K11T revealed that Q-8 is the predominant quinone; the polar lipids contain phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and five uncharacterised lipids; the major cellular fatty acid was identified as summed feature 3 (C16:1 ?7c and/or iso-C15:0 2-OH; 45.9%), followed by C16:0 (20.5%) and C18:1 ?7c (15.8%). Based on the phenotypic and phylogenetic evidence, DNA-DNA hybridisation, OrthoANI, chemotaxonomic analysis and results of the physiological and biochemical tests, a new species named Thauera sinica sp. nov. is proposed with strain K11T (= CGMCC 1.15731T = KACC 19216T) designated as the type strain.


July 7, 2019  |  

Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics.

Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.


July 7, 2019  |  

Isolation and identification of an anthracimycin analogue from Nocardiopsis kunsanensis, a halophile from a saltern, by genomic mining strategy.

Modern medicine is unthinkable without antibiotics; yet, growing issues with microbial drug resistance require intensified search for new active compounds. Natural products generated by Actinobacteria have been a rich source of candidate antibiotics, for example anthracimycin that, so far, is only known to be produced by Streptomyces species. Based on sequence similarity with the respective biosynthetic cluster, we sifted through available microbial genome data with the goal to find alternative anthracimycin-producing organisms. In this work, we report about the prediction and experimental verification of the production of anthracimycin derivatives by Nocardiopsis kunsanensis, a non-Streptomyces actinobacterial microorganism. We discovered N. kunsanensis to predominantly produce a new anthracimycin derivative with methyl group at C-8 and none at C-2, labeled anthracimycin BII-2619, besides a minor amount of anthracimycin. It displays activity against Gram-positive bacteria with similar low level of mammalian cytotoxicity as that of anthracimycin.


July 7, 2019  |  

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of ß-lactamase [NPS ß-lactamase (EC 3.5.2.6), ß-lactamase class C, and a metal-dependent hydrolase of ß-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.


July 7, 2019  |  

Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication.

The mismatch repair (MMR) system, exemplified by the MutS/MutL proteins, is widespread in Bacteria and Eukarya. However, molecular mechanisms how numerous archaea and bacteria lacking the mutS/mutL genes maintain high replication fidelity and genome stability have remained elusive. EndoMS is a recently discovered hyperthermophilic mismatch-specific endonuclease encoded by nucS in Thermococcales. We deleted the nucS from the actinobacterium Corynebacterium glutamicum and demonstrated a drastic increase of spontaneous transition mutations in the nucS deletion strain. The observed spectra of these mutations were consistent with the enzymatic properties of EndoMS in vitro. The robust mismatch-specific endonuclease activity was detected with the purified C. glutamicum EndoMS protein but only in the presence of the ß-clamp (DnaN). Our biochemical and genetic data suggest that the frequently occurring G/T mismatch is efficiently repaired by the bacterial EndoMS-ß-clamp complex formed via a carboxy-terminal sequence motif of EndoMS proteins. Our study thus has great implications for understanding how the activity of the novel MMR system is coordinated with the replisome and provides new mechanistic insight into genetic diversity and mutational patterns in industrially and clinically (e.g. Mycobacteria) important archaeal and bacterial phyla previously thought to be devoid of the MMR system.


July 7, 2019  |  

HECIL: A Hybrid Error Correction Algorithm for Long Reads with Iterative Learning.

Second-generation DNA sequencing techniques generate short reads that can result in fragmented genome assemblies. Third-generation sequencing platforms mitigate this limitation by producing longer reads that span across complex and repetitive regions. However, the usefulness of such long reads is limited because of high sequencing error rates. To exploit the full potential of these longer reads, it is imperative to correct the underlying errors. We propose HECIL-Hybrid Error Correction with Iterative Learning-a hybrid error correction framework that determines a correction policy for erroneous long reads, based on optimal combinations of decision weights obtained from short read alignments. We demonstrate that HECIL outperforms state-of-the-art error correction algorithms for an overwhelming majority of evaluation metrics on diverse, real-world data sets including E. coli, S. cerevisiae, and the malaria vector mosquito A. funestus. Additionally, we provide an optional avenue of improving the performance of HECIL’s core algorithm by introducing an iterative learning paradigm that enhances the correction policy at each iteration by incorporating knowledge gathered from previous iterations via data-driven confidence metrics assigned to prior corrections.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.