Menu
April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA.

Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3-/- mice carrying Dnase1l3+/- fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3 Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity. Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


April 21, 2020  |  

Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat.

Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail. © 2018 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.


April 21, 2020  |  

The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita.

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes. Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides.

Extracellular RNA has been proposed to mediate communication between cells and organisms however relatively little is understood regarding how specific sequences are selected for export. Here, we describe a specific Argonaute protein (exWAGO) that is secreted in extracellular vesicles (EVs) released by the gastrointestinal nematode Heligmosomoides bakeri, at multiple copies per EV. Phylogenetic and gene expression analyses demonstrate exWAGO orthologues are highly conserved and abundantly expressed in related parasites but highly diverged in free-living genus Caenorhabditis. We show that the most abundant small RNAs released from the nematode parasite are not microRNAs as previously thought, but rather secondary small interfering RNAs (siRNAs) that are produced by RNA-dependent RNA Polymerases. The siRNAs that are released in EVs have distinct evolutionary properties compared to those resident in free-living or parasitic nematodes. Immunoprecipitation of exWAGO demonstrates that it specifically associates with siRNAs from transposons and newly evolved repetitive elements that are packaged in EVs and released into the host environment. Together this work demonstrates molecular and evolutionary selectivity in the small RNA sequences that are released in EVs into the host environment and identifies a novel Argonaute protein as the mediator of this. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.


April 21, 2020  |  

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


April 21, 2020  |  

Highly flexible infection programs in a specialized wheat pathogen.

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.


April 21, 2020  |  

BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site.

Prokaryotes evolved numerous systems that defend against predation by bacteriophages. In addition to well-known restriction-modification and CRISPR-Cas immunity systems, many poorly characterized systems exist. One class of such systems, named BREX, consists of a putative phosphatase, a methyltransferase and four other proteins. A Bacillus cereus BREX system provides resistance to several unrelated phages and leads to modification of specific motif in host DNA. Here, we study the action of BREX system from a natural Escherichia coli isolate. We show that while it makes cells resistant to phage ? infection, induction of ? prophage from cells carrying BREX leads to production of viruses that overcome the defense. The induced phage DNA contains a methylated adenine residue in a specific motif. The same modification is found in the genome of BREX-carrying cells. The results establish, for the first time, that immunity to BREX system defense is provided by an epigenetic modification.


April 21, 2020  |  

DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions

The largest genome-wide association studies have identified schizophrenia and intelligence associated variants in the MIR137HG locus containing genes encoding microRNA-137 and microRNA-2682. In the present study, we investigated DNA methylation in the MIR137HG intragenic CpG island (CGI) in the peripheral blood of 44 patients with schizophrenia and 50 healthy controls. The CGI included the entire MIR137 gene and the region adjacent to the 5′-end of MIR2682. The aim of the study was to examine the relationship of the CGI methylation with schizophrenia and cognitive functioning. The methylation level of 91 CpG located in the selected region was established for each participant by means of single-molecule real-time bisulfite sequencing. All subjects completed the battery of neuropsychological tests. We found that the CGI was hypomethylated in both groups, except for one site—CpG (chr1: 98?511?049), with significant interindividual variability in methylation. A higher level of methylation of this CpG was seen in male patients and was associated with a decrease in the cognitive index in the combined sample of patients and controls. Our data suggest that further investigation of mechanisms that regulate the MIR137 and MIR2682 genes expression might help to understand the molecular basis of cognitive deficits in schizophrenia.


April 21, 2020  |  

Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense.

Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete1-4. Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3-79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes1,3, these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.


April 21, 2020  |  

Alternative polyadenylation coordinates embryonic development, sexual dimorphism and longitudinal growth in Xenopus tropicalis.

RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.


April 21, 2020  |  

The developmental dynamics of the Populus stem transcriptome.

The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast.

Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ~20-60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.