Menu
September 22, 2019  |  

Complete genome sequence of Enterobacter cloacae R11 reveals multiple genes potentially associated with high-level polymyxin E resistance.

Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 µg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4?993?008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.


September 22, 2019  |  

Extensively drug-resistant Escherichia coli sequence type 1642 carrying an IncX3 plasmid containing the blaKPC-2 gene associated with transposon Tn4401a.

Extensively drug-resistant (XDR) Enterobacteriaceae carrying the bla(KPC) gene have emerged as a major global therapeutic concern. The purpose of this study was to analyze the complete sequences of plasmids from KPC-2 carbapenemase-producing XDR Escherichia coli sequence type (ST) 1642 isolates.We performed antimicrobial susceptibility testing, PCR, multilocus sequence typing (MLST), and whole-genome sequencing to characterize the plasmid-mediated KPC-2-producing E. coli clinical isolates.The isolates were resistant to most available antibiotics, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but susceptible to tigecycline and colistin. The isolates were identified as the rare ST1642 by MLST. The isolates carried four plasmids: the first 69-kb conjugative IncX3 plasmid harbors bla(KPC-2) within a truncated Tn4401a transposon and bla(SHV-11) with duplicated conjugative elements. The second 142-kb plasmid with a multireplicon consisting of IncQ, IncFIA, and IncIB carries bla(TEM-1b) and two class 1 integrons. This plasmid also harbors a wide variety of additional antimicrobial resistance genes including aadA5, dfrA17, mph(A), sul1, tet(B), aac(3′)-IId, strA, strB, and sul2.The complete sequence analysis of plasmids from an XDR E. coli strain related to persistent infection showed the coexistence of a bla(KPC-2)-carrying IncX3-type plasmid and a class 1 integron-harboring multireplicon, suggesting its potential to cause outbreaks. Of additional clinical significance, the rare ST1642, identified in a cat, could constitute the source of human infection.


September 22, 2019  |  

Complete nucleotide sequences of two KPC-2-encoding plasmids from the same Citrobacter freundii isolate.

Large amounts of antibiotics are released from humans and animals into aquatic environments and lead to an increased abundance of environmental MDR bacteria, which pose a potential threat to public health. It is worrisome that the entry of carbapenemase-producing Enterobacteriaceae (CPE) into the environment is increasingly reported; these carbapenem-resistant bacteria pose a severe health threat as few therapeutic options are available for such pathogens. Although culture-independent approaches are capable of revealing the vast genetic diversity of the environmental resistome, there are few data regarding deeper characterization of mechanisms of environmental CPE isolates. Here, we describe the complete sequences of two blaKPC-2-containing plasmids present in the same Citrobacter freundii isolated from river sediment.


September 22, 2019  |  

Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak.

Until recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae were rarely identified in Australia. Following an increase in the number of incident cases across the state of Victoria, we undertook a real-time combined genomic and epidemiological investigation. The scope of this study included identifying risk factors and routes of transmission, and investigating the utility of genomics to enhance traditional field epidemiology for informing management of established widespread outbreaks.All KPC-producing Enterobacteriaceae isolates referred to the state reference laboratory from 2012 onwards were included. Whole-genome sequencing was performed in parallel with a detailed descriptive epidemiological investigation of each case, using Illumina sequencing on each isolate. This was complemented with PacBio long-read sequencing on selected isolates to establish high-quality reference sequences and interrogate characteristics of KPC-encoding plasmids.Initial investigations indicated that the outbreak was widespread, with 86 KPC-producing Enterobacteriaceae isolates (K. pneumoniae 92%) identified from 35 different locations across metropolitan and rural Victoria between 2012 and 2015. Initial combined analyses of the epidemiological and genomic data resolved the outbreak into distinct nosocomial transmission networks, and identified healthcare facilities at the epicentre of KPC transmission. New cases were assigned to transmission networks in real-time, allowing focussed infection control efforts. PacBio sequencing confirmed a secondary transmission network arising from inter-species plasmid transmission. Insights from Bayesian transmission inference and analyses of within-host diversity informed the development of state-wide public health and infection control guidelines, including interventions such as an intensive approach to screening contacts following new case detection to minimise unrecognised colonisation.A real-time combined epidemiological and genomic investigation proved critical to identifying and defining multiple transmission networks of KPC Enterobacteriaceae, while data from either investigation alone were inconclusive. The investigation was fundamental to informing infection control measures in real-time and the development of state-wide public health guidelines on carbapenemase-producing Enterobacteriaceae surveillance and management.


September 22, 2019  |  

In situ analyses directly in diarrheal stool reveal large variations in bacterial load and active toxin expression of enterotoxigenic Escherichia coli and Vibrio cholerae.

The bacterial pathogens enterotoxigenicEscherichia coli(ETEC) andVibrio choleraeare major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), whileV. choleraeproduces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102and 108bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102to 104of either ETEC orV. choleraetoxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCEThe cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenicE. coli(ETEC) andVibrio choleraedirectly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.


September 22, 2019  |  

Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline.

Decline-diseases are complex and becoming increasingly problematic to tree health globally. Acute Oak Decline (AOD) is characterized by necrotic stem lesions and galleries of the bark-boring beetle, Agrilus biguttatus, and represents a serious threat to oak. Although multiple novel bacterial species and Agrilus galleries are associated with AOD lesions, the causative agent(s) are unknown. The AOD pathosystem therefore provides an ideal model for a systems-based research approach to address our hypothesis that AOD lesions are caused by a polymicrobial complex. Here we show that three bacterial species, Brenneria goodwinii, Gibbsiella quercinecans and Rahnella victoriana, are consistently abundant in the lesion microbiome and possess virulence genes used by canonical phytopathogens that are expressed in AOD lesions. Individual and polyspecies inoculations on oak logs and trees demonstrated that B. goodwinii and G. quercinecans cause tissue necrosis and, in combination with A. biguttatus, produce the diagnostic symptoms of AOD. We have proved a polybacterial cause of AOD lesions, providing new insights into polymicrobial interactions and tree disease. This work presents a novel conceptual and methodological template for adapting Koch’s postulates to address the role of microbial communities in disease.


September 22, 2019  |  

The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”, (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen.

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli.

Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn’s disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.


September 22, 2019  |  

Origin of the plasmid-mediated fosfomycin resistance gene fosA3.

fosA3 is the most commonly reported plasmid-mediated fosfomycin resistance gene among Enterobacteriaceae.To identify the origin of fosA3.The chromosome of Kluyvera georgiana clinical strain YDC799 was fully sequenced with single-molecule real-time sequencing. Comparative genetic analysis was performed for K. georgiana YDC799, K. georgiana type strain ATCC 51603 and representative fosA3-carrying plasmids. fosA genes were cloned in Escherichia coli to confirm function.K. georgiana YDC799 harboured fosA (designated fosAKG) and blaCTX-M-8 on the chromosome. The genetic environments surrounding fosA3 and bounded by IS26 were nearly identical with the corresponding regions of K. georgiana YDC799 and ATCC 51603. The amino acid sequence of FosAKG from YDC799 and K. georgiana ATCC 51603 shared 99% and 94% identity with FosA3, respectively. Cloned FosAKG conferred fosfomycin resistance with an MIC of?>1024 mg/L for E. coli.The plasmid-mediated fosA3 gene was likely mobilized from the chromosome of K. georgiana by an IS26-mediated event.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


September 22, 2019  |  

Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.


September 22, 2019  |  

Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron.

Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses.Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere ofH. ammodendronin Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K? content and K?/Na? ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species inPseudomonasand named asPseudomonassp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified inPseudomonassp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.


September 22, 2019  |  

Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP).

Our body has natural defense systems to protect against potentially harmful microbes, including the physical and chemical barriers of the intestinal epithelium (Corfield et al., 2000). The physical barrier of the intestinal epithelium protects the host against pathogenic microbes (Anderson et al., 1993), and the intestinal mucosa coated with mucus excretes pathogens from the intestinal tract (Corfield et al., 2000).


September 22, 2019  |  

Pantoea ananatis genetic diversity analysis reveals limited genomic diversity as well as accessory genes correlated with onion pathogenicity.

Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.


September 22, 2019  |  

Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection.

Nosocomial pathogens can cause life-threatening infections in neonates and immunocompromised patients. E. bugandensis (EB-247) is a recently described species of Enterobacter, associated with neonatal sepsis. Here we demonstrate that the extended spectrum ß-lactam (ESBL) producing isolate EB-247 is highly virulent in both Galleria mellonella and mouse models of infection. Infection studies in a streptomycin-treated mouse model showed that EB-247 is as efficient as Salmonella Typhimurium in inducing systemic infection and release of proinflammatory cytokines. Sequencing and analysis of the complete genome and plasmid revealed that virulence properties are associated with the chromosome, while antibiotic-resistance genes are exclusively present on a 299?kb IncHI plasmid. EB-247 grew in high concentrations of human serum indicating septicemic potential. Using whole genome-based transcriptome analysis we found 7% of the genome was mobilized for growth in serum. Upregulated genes include those involved in the iron uptake and storage as well as metabolism. The lasso peptide microcin J25 (MccJ25), an inhibitor of iron-uptake and RNA polymerase activity, inhibited EB-247 growth. Our studies indicate that Enterobacter bugandensis is a highly pathogenic species of the genus Enterobacter. Further studies on the colonization and virulence potential of E. bugandensis and its association with septicemic infection is now warranted.


September 22, 2019  |  

Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3.

Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L-1, inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.