April 21, 2020  |  

Characterization of mcr-1-Harboring Plasmids from Pan Drug-Resistant Escherichia coli Strains Isolated from Retail Raw Chicken in South Korea

A number of studies from different countries have characterized mcr-1-harboring plasmids isolated from food; however, nothing has been reported about it in South Korea. In this study, we report the characterization of mcr-1 plasmids from pan drug-resistant (PDR) Escherichia coli strains isolated from retail food in the country. Colistin-resistant E. coli strains were isolated from retail raw chicken, and PCR was carried out to detect the mcr-1 gene. Whole genome sequencing of the mcr-1-positive strains was performed for further characterization. The results of whole genome sequencing revealed that all mcr-1 plasmids belonged to the IncI2 type. In addition to the mcr-1 plasmids, all of the isolates also carried additional plasmids possessing multiple antibiotic resistance genes, and the PDR was mediated by resistant plasmids except for fluoroquinolone resistance resulting from mutations in gyrA and parC. Interestingly, the mcr-1 plasmids were transferred by conjugation to other pathogenic strains including enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), Salmonella, and Klebsiella at the frequencies of 10−3−10−6, 10−2−10−5, 10−4−10−5, 10−4−10−6, and 10−5−10−6, respectively. The results showed that mcr-1 plasmids can be easily transmitted to pathogenic bacteria by conjugation.

April 21, 2020  |  

Differential transcriptome analysis of enterohemorrhagic Escherichia coli strains reveals differences in response to plant-derived compounds.

Several serious vegetable-associated outbreaks of enterohemorrhagic Escherichia coli (EHEC) infections have occurred during the last decades. In this context, vegetables have been suggested to function as secondary reservoirs for EHEC strains. Increased knowledge about the interaction of EHEC with plants including gene expression patterns in response to plant-derived compounds is required. In the current study, EHEC O157:H7 strain Sakai, EHEC O157:H- strain 3072/96, and the EHEC/enteroaggregative E. coli (EAEC) hybrid O104:H4 strain C227-11fcu were grown in lamb’s lettuce medium and in M9 minimal medium to study the differential transcriptional response of these strains to plant-derived compounds with RNA-Seq technology.Many genes involved in carbohydrate degradation and peptide utilization were similarly upregulated in all three strains, suggesting that the lamb’s lettuce medium provides sufficient nutrients for proliferation. In particular, the genes galET and rbsAC involved in galactose metabolism and D-ribose catabolism, respectively, were uniformly upregulated in the investigated strains. The most prominent differences in shared genome transcript levels were observed for genes involved in the expression of flagella. Transcripts of all three classes of the flagellar hierarchy were highly abundant in strain C227-11fcu. Strain Sakai expressed only genes encoding the basal flagellar structure. In addition, both strains showed increased motility in presence of lamb’s lettuce extract. Moreover, strain 3072/96 showed increased transcription activity for genes encoding the type III secretion system (T3SS) including effectors, and was identified as a powerful biofilm-producer in M9 minimal medium.The current study provides clear evidence that EHEC and EHEC/EAEC strains are able to adjust their gene expression patterns towards metabolization of plant-derived compounds, demonstrating that they may proliferate well in a plant-associated environment. Moreover, we propose that flagella and other surface structures play a fundamental role in the interaction of EHEC and EHEC/EAEC with plants.

April 21, 2020  |  

Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7.

Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains.The chromosome of NADC 6564 contained 5466?kb compared to reference strains Sakai (5498?kb) and EDL933 (5547?kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb?IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32-33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb?IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains.These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.