Menu
September 22, 2019  |  

Molecular epidemiology and mechanism of sulbactam resistance in Acinetobacter baumannii isolates with diverse genetic background in China

Sulbactam is a plausible option for treating Acinetobacter infections because of its intrinsic antibacterial activity against the members of the Acinetobacter genus, but the mechanisms of sulbactam resistance have not been fully studied in Acinetobacter baumannii In this study, a total of 2,197 clinical A. baumannii isolates were collected from 27 provinces in China. Eighty-eight isolates with various MICs for sulbactam were selected on the basis of their diverse clonality and underwent multilocus sequence typing (MLST), antimicrobial susceptibility testing, and resistance gene screening. The copy number and relative expression of blaTEM-1D and ampC were measured via quantitative PCR and quantitative reverse transcription-PCR, respectively. The genetic structure of multicopy blaTEM-1D was determined using the whole-genome sequencing technology. The cefoperazone-sulbactam resistance rate of the 2,197 isolates was 39.7%. The rate of positivity for blaTEM-1D or ISAba1-ampC in the sulbactam-nonsusceptible group (64.91% and 78.95%, respectively) was significantly higher than that in the sulbactam-susceptible group (0% and 0%, respectively; P < 0.001). The MIC of sulbactam (P < 0.001) varied considerably between the groups expressing ampC with or without upstream ISAba1 Notably, the genetic structure of the multicopy blaTEM-1D gene in strain ZS3 revealed that blaTEM-1D was embedded within four tandem copies of the cassette IS26-blaTEM-1D-Tn3-IS26 Therefore, blaTEM-1D and ISAba1-ampC represent the prevalent mechanism underlying sulbactam resistance in clinical A. baumannii isolates in China. The structure of the four tandem copies of blaTEM-1D first identified may increase sulbactam resistance. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.


September 22, 2019  |  

Basic characterization of natural transformation in a highly transformable Haemophilus parasuis strain SC1401.

Haemophilus parasuis causes Glässer’s disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401.


September 22, 2019  |  

Multidrug-resistant Escherichia albertii: Co-occurrence of ß-lactamase and MCR-1 encoding genes.

Escherichia albertii is an emerging member of the Enterobacteriaceae causing human and animal enteric infections. Antimicrobial resistance among enteropathogens has been reported to be increasing in the past years. The purpose of this study was to investigate antibiotic resistance and resistance genes in E. albertii isolated from Zigong city, Sichuan province, China. The susceptibility to 21 antimicrobial agents was determined by Kirby-Bauer disk diffusion method. The highest prevalence was tetracycline resistance with a rate of 62.7%, followed by resistance to nalidixic acid and streptomycin with a rate of 56.9 and 51.0%, respectively. All isolates were sensitive or intermediate susceptible to imipenem, meropenem, amoxicillin-clavulanic acid, and levofloxacin. Among 51 E. albertii isolates, 15 were extended-spectrum ß-lactamase-producing as confirmed by the double disk test. The main ß-lactamase gene groups, i.e., blaTEM, blaSHV, and blaCTX-M, were detected in17, 20, and 22 isolates, respectively. Furthermore, four colistin-resistant isolates with minimum inhibitory concentrations of 8 mg/L were identified. The colistin-resistant isolates all harbored mcr-1 and blaCTX-M-55. Genome sequencing showed that E. albertii strain SP140150 carried mcr-1 and blaCTX-M-55 in two different plasmids. This study provided significant information regarding antibiotic resistance profiles and identified the co-occurrence of ß-lactamase and MCR-1 encoding genes in E. albertii isolates.


September 22, 2019  |  

Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins.

Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S. Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S. Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the blaCTX-M-15 extended-spectrum ß-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S. Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S. Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S. Typhi clone in Sindh, Pakistan. The XDR S. Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S. Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S. Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S. Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S. Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S. Typhi observed here adds urgency to the need for typhoid prevention measures.


September 22, 2019  |  

Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection.

Nosocomial pathogens can cause life-threatening infections in neonates and immunocompromised patients. E. bugandensis (EB-247) is a recently described species of Enterobacter, associated with neonatal sepsis. Here we demonstrate that the extended spectrum ß-lactam (ESBL) producing isolate EB-247 is highly virulent in both Galleria mellonella and mouse models of infection. Infection studies in a streptomycin-treated mouse model showed that EB-247 is as efficient as Salmonella Typhimurium in inducing systemic infection and release of proinflammatory cytokines. Sequencing and analysis of the complete genome and plasmid revealed that virulence properties are associated with the chromosome, while antibiotic-resistance genes are exclusively present on a 299?kb IncHI plasmid. EB-247 grew in high concentrations of human serum indicating septicemic potential. Using whole genome-based transcriptome analysis we found 7% of the genome was mobilized for growth in serum. Upregulated genes include those involved in the iron uptake and storage as well as metabolism. The lasso peptide microcin J25 (MccJ25), an inhibitor of iron-uptake and RNA polymerase activity, inhibited EB-247 growth. Our studies indicate that Enterobacter bugandensis is a highly pathogenic species of the genus Enterobacter. Further studies on the colonization and virulence potential of E. bugandensis and its association with septicemic infection is now warranted.


September 22, 2019  |  

Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites.

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite’s adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Dissemination of KPC-2-encoding IncX6 plasmids among multiple Enterobacteriaceae species in a single Chinese hospital.

Forty-five KPC-producing Enterobacteriaceae strains were isolated from multiple departments in a Chinese public hospital from 2014 to 2015. Genome sequencing of four representative strains, namely Proteus mirabilis GN2, Serratia marcescens GN26, Morganella morganii GN28, and Klebsiella aerogenes E20, indicated the presence of blaKPC-2-carrying IncX6 plasmids pGN2-KPC, pGN26-KPC, pGN28-KPC, and pE20-KPC in the four strains, respectively. These plasmids were genetically closely related to one another and to the only previously sequenced IncX6 plasmid, pKPC3_SZ. Each of the plasmids carried a single accessory module containing the blaKPC-2/3-carrying ?Tn6296 derivatives. The ?Tn6292 element from pGN26-KPC also contained qnrS, which was absent from all other plasmids. Overall, pKPC3_SZ-like blaKPC-carrying IncX6 plasmids were detected by PCR in 44.4% of the KPC-producing isolates, which included K. aerogenes, P. mirabilis, S. marcescens, M. morganii, Escherichia coli, and Klebsiella pneumoniae, and were obtained from six different departments of the hospital. Data presented herein provided insights into the genomic diversity and evolution of IncX6 plasmids, as well as the dissemination and epidemiology of blaKPC-carrying IncX6 plasmids among Enterobacteriaceae in a hospital setting.


September 22, 2019  |  

Whole genome sequencing of greater amberjack (Seriola dumerili) for SNP identification on aligned scaffolds and genome structural variation analysis using parallel resequencing

Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8?Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence.


September 22, 2019  |  

Tn2008-driven carbapenem resistance in Acinetobacter baumannii isolates from a period of increased incidence of infections in a Southwest Virginia hospital (USA).

The objectives of this study were (i) to determine the genetic basis for carbapenem resistance in multidrug-resistant (MDR) Acinetobacter baumannii strains isolated from patients affected by a sudden increase in the incidence of infections by such organisms in a tertiary care hospital in Virginia, USA, in 2009-2010 and (ii) to examine whether such strains are commonly encountered in the hospital setting.The whole genomes of one outbreak strain as well as one carbapenem-resistant and one carbapenem-sensitive strain from sporadic infections in 2010-2012 were sequenced and analysed. Then, 5 outbreak isolates and 57 sporadic isolates (of which 39 were carbapenem-resistant) were screened by PCR for relevant DNA elements identified in the genomics investigation.All three strains for which whole-genome sequences were obtained carried resistance genes linked to MDR phenotypes and a ca. 111-kbp plasmid (pCMCVTAb1) without drug resistance genes. Of these, the two carbapenem-resistant strains possessed a ca. 74-kbp plasmid (pCMCVTAb2) carrying a Tn2008 transposon that provides high-level carbapenem resistance. PCR analysis showed that all of the outbreak isolates carried both plasmids and Tn2008, and of the sporadic isolates 88% carried pCMCVTAb1, 25% contained pCMCVTAb2 and 50% of the latter group carried Tn2008.Carbapenem resistance in outbreak strains and 12% of sporadic isolates was due to the pCMCVTAb2-borne Tn2008. This is the first report of a Tn2008-driven outbreak of carbapenem-resistant A. baumannii infections in the Commonwealth of Virginia, which followed similar cases in Pennsylvania and Ohio. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. All rights reserved.


September 22, 2019  |  

CliqueSNV: Scalable reconstruction of intra-host viral populations from NGS reads

Highly mutable RNA viruses such as influenza A virus, human immunodeficiency virus and hepatitis C virus exist in infected hosts as highly heterogeneous populations of closely related genomic variants. The presence of low-frequency variants with few mutations with respect to major strains may result in an immune escape, emergence of drug resistance, and an increase of virulence and infectivity. Next-generation sequencing technologies permit detection of sample intra-host viral population at extremely great depth, thus providing an opportunity to access low-frequency variants. Long read lengths offered by single-molecule sequencing technologies allow all viral variants to be sequenced in a single pass. However, high sequencing error rates limit the ability to study heterogeneous viral populations composed of rare, closely related variants. In this article, we present CliqueSNV, a novel reference-based method for reconstruction of viral variants from NGS data. It efficiently constructs an allele graph based on linkage between single nucleotide variations and identifies true viral variants by merging cliques of that graph using combinatorial optimization techniques. The new method outperforms existing methods in both accuracy and running time on experimental and simulated NGS data for titrated levels of known viral variants. For PacBio reads, it accurately reconstructs variants with frequency as low as 0.1%. For Illumina reads, it fully reconstructs main variants. The open source implementation of CliqueSNV is freely available for download at https://github.com/vyacheslav-tsivina/CliqueSNV


September 22, 2019  |  

New Delhi metallo-beta-lactamase-producing Enterobacteriaceae in South Korea between 2010 and 2015.

This study was carried out to investigate the epidemiological time-course of New Delhi metallo-beta-lactamase- (NDM-) mediated carbapenem resistance in Enterobacteriaceae in South Korea. A total of 146 non-duplicate NDM-producing Enterobacteriaceae recovered between 2010 and 2015 were voluntarily collected from 33 general hospitals and confirmed by PCR. The species were identified by sequences of the 16S rDNA. Antimicrobial susceptibility was determined either by the disk diffusion method or by broth microdilution, and the carbapenem MICs were determined by agar dilution. Then, multilocus sequence typing and PCR-based replicon typing was carried out. Co-carried genes for drug resistance were identified by PCR and sequencing. The entire genomes of eight random selected NDM producers were sequenced. A total of 69 Klebsiella pneumoniae of 12 sequence types (STs), 34 Escherichia coli of 15 STs, 28 Enterobacter spp. (including one Enterobacter aerogenes), nine Citrobacter freundii, four Raoultella spp., and two Klebsiella oxytoca isolates produced either NDM-1 (n = 126), NDM-5 (n = 18), or NDM-7 (n = 2). The isolates co-produced CTX-M-type ESBL (52.1%), AmpCs (27.4%), additional carbapenemases (7.1%), and/or 16S rRNA methyltransferases (4.8%), resulting in multidrug-resistance (47.9%) or extensively drug-resistance (52.1%). Among plasmids harboring blaNDM, IncX3 was predominant (77.4%), followed by the IncFII type (5.8%). Genome analysis revealed inter-species and inter-strain horizontal gene transfer of the plasmid. Both clonal dissemination and plasmid transfer contributed to the wide dissemination of NDM producers in South Korea.


September 22, 2019  |  

Genetic basis of chromosomally-encoded mcr-1 gene.

Compared with plasmid-borne mcr-1, the occurrence of chromosomally-encoded mcr-1 is rare although it has been reported in several cases. This study aimed to investigate the genetic features of chromosomally-encoded mcr-1 among Escherichia coli strains as well as the potential genetic basis governing mobilisation of mcr-1 in bacterial chromosomes. The genome sequences of 16 E. coli strains containing a chromosomal mcr-1 gene were obtained and analysed. Phylogenetic and whole-genome sequencing (WGS) analysis demonstrated that mcr-1 was associated with four major types of genetic arrangements, namely ISApl1-mcr1-orf, Tn6330, complex Tn6330 and ?Tn6330 in chromosomes of genetically unrelated E. coli strains. The mcr-1-carrying mobile elements were shown to insert into the AT-rich region, which was also the case for ISApl1. Analysis of complete E. coli genome sequences showed that there were multiple copies of ISApl1 present in E. coli chromosomes that also carried mcr-1, whilst all mcr-1-negative chromosomes were absent of any copy of ISApl1, suggesting the strong association of ISApl1 and mcr-1. Insertion of ISApl1 into E. coli chromosomes may be a prerequisite for the insertion of mcr-1-carrying mobile elements. Insertion of mcr-1 into E. coli chromosomes would enable it to become intrinsically resistant, which is expected to become more prevalent. Policy on the prudent use of colistin both in veterinary and clinical settings should be imposed globally to further prevent dissemination of mcr-1 in E. coli and other bacterial pathogens. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


September 22, 2019  |  

Plasmid-mediated quinolone resistance in Shigella flexneriisolated from macaques.

Non-human primates (NHPs) for biomedical research are commonly infected with Shigella spp. that can cause acute dysentery or chronic episodic diarrhea. These animals are often prophylactically and clinically treated with quinolone antibiotics to eradicate these possible infections. However, chromosomally- and plasmid-mediated antibiotic resistance has become an emerging concern for species in the family Enterobacteriaceae. In this study, five individual isolates of multi-drug resistant Shigella flexneri were isolated from the feces of three macaques. Antibiotic susceptibility testing confirmed resistance or decreased susceptibility to ampicillin, amoxicillin-clavulanic acid, cephalosporins, gentamicin, tetracycline, ciprofloxacin, enrofloxacin, levofloxacin, and nalidixic acid. S. flexneri isolates were susceptible to trimethoprim-sulfamethoxazole, and this drug was used to eradicate infection in two of the macaques. Plasmid DNA from all isolates was positive for the plasmid-encoded quinolone resistance gene qnrS, but not qnrA and qnrB. Conjugation and transformation of plasmid DNA from several S. flexneri isolates into antibiotic-susceptible Escherichia coli strains conferred the recipients with resistance or decreased susceptibility to quinolones and beta-lactams. Genome sequencing of two representative S. flexneri isolates identified the qnrS gene on a plasmid-like contig. These contigs showed >99% homology to plasmid sequences previously characterized from quinolone-resistant Shigella flexneri 2a and Salmonella enterica strains. Other antibiotic resistance genes and virulence factor genes were also identified in chromosome and plasmid sequences in these genomes. The findings from this study indicate macaques harbor pathogenic S. flexneri strains with chromosomally- and plasmid-encoded antibiotic resistance genes. To our knowledge, this is the first report of plasmid-mediated quinolone resistance in S. flexneri isolated from NHPs and warrants isolation and antibiotic testing of enteric pathogens before treating macaques with quinolones prophylactically or therapeutically.


September 22, 2019  |  

Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA.

Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30?kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.