June 1, 2021  |  

Sequencing of expanded CGG repeats in the FMR1 gene.

Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent development of single molecule, real-time sequencing represents a novel approach to DNA sequencing that couples the intrinsic processivity of DNA polymerase with the ability to read polymerase activity on a single-molecule basis. Further, the accuracy of the method is improved through the use of circular templates, such that each molecule can be read multiple times to produce a circular consensus sequence (CCS). We have succeeded in generating CCS reads representing multiple passes through both strands of repeat tracts exceeding 700 CGGs (>2 kb of 100 percent CG) flanked by native FMR1 sequence, with single-molecule readlengths exceeding 12 kb. This sequencing approach thus enables us to fully characterize the previously intractable CGG-repeat sequence, leading to a better understanding of the distinct associated molecular pathologies. Real-time kinetic data also provides insight into the activity of DNA polymerase inside this unique sequence. The methodology should be widely applicable for studies of the molecular pathogenesis of an increasing number of repeat expansion-associated neurodegenerative and neurodevelopmental disorders, and for the efficient identification of such disorders in the clinical setting.


June 1, 2021  |  

Harnessing kinetic information in Single-Molecule, Real-Time Sequencing.

Single-Molecule Real-Time (SMRT) DNA sequencing is unique in that nucleotide incorporation events are monitored in real time, leading to a wealth of kinetic information in addition to the extraction of the primary DNA sequence. The dynamics of the DNA polymerase that is observed adds an additional dimension of sequence-dependent information, and can be used to learn more about the molecule under study. First, the primary sequence itself can be determined more accurately. The kinetic data can be used to corroborate or overturn consensus calls and even enable calling bases in problematic sequence contexts. Second, using the kinetic information, we can detect and discriminate numerous chemical base modifications as a by-product of ordinary sequencing. Examples of applying these capabilities include (i) the characterization of the epigenome of microorganisms by directly sequencing the three common prokaryotic epigenetic base modifications of 4-methylcytosine, 5- methylcytosine and 6-methyladenine; (ii) the characterization of known and novel methyltransferase activities; (iii) the direct sequencing and differentiation of the four eukaryotic epigenetic forms of cytosine (5-methyl, 5-hydroxymethyl, 5-formyl, and 5-carboxylcytosine) with first applications to map them with single base-pair and DNA strand resolution across mammalian genomes; (iv) the direct sequencing and identification of numerous modified DNA bases arising from DNA damage; and (v) an exploration of the mitochondrial genome for known and novel base modifications. We will show our progress towards a generic, open-source algorithm for exploiting kinetic information for any of these purposes.


June 1, 2021  |  

Direct sequencing and identification of damaged DNA bases.

DNA is under constant stress from both endogenous and exogenous sources. DNA base modifications resulting from various types of DNA damage are wide-spread and play important roles in affecting physiological states and disease phenotypes. Examples include oxidative damage (8- oxoguanine, 8-oxoadenine; aging, Alzheimer’s, Parkinson’s), alkylation (1-methyladenine, 6-O- methylguanine; cancer), adduct formation (benzo[a]pyrene diol epoxide (BPDE), pyrimidine dimers; smoking, industrial chemical exposure, chemical UV light exposure, cancer), and ionizing radiation damage (5-hydroxycytosine, 5- hydroxyuracil, 5-hydroxymethyluracil; cancer). Currently, these and other products of DNA damage cannot be sequenced with existing sequencing methods. In contrast, single molecule, real-time (SMRT) DNA sequencing can report on modified DNA bases through an analysis of the DNA polymerase kinetics that is affected by a modified base in the template. We demonstrate the DNA strand-resolved sequencing of over 8 different DNA-damage associated base modifications, with base pair resolution and single DNA molecule sensitivity. We also report on the application of this sequencing capability to biological samples and the development of a generic, open-source algorithm to analyze kinetic information from SMRT sequencing.


June 1, 2021  |  

Long-read, single-molecule applications for protein engineering.

The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data are clustered by barcode to generate multi-molecule consensus sequences for each construct present in the pool. As a proof-of-concept dataset, we have generated a library of 384 randomly mutated variants of the Phi29 DNA polymerase, a 575 amino acid protein encoded by a 1.7 kb gene. These variants were amplified with a set of barcoded primers, and the resulting library was sequenced on a single SMRT Cell. The data produced sequences that were completely concordant with independent Sanger sequencing, for a 100% accurate reconstruction of the set of clones.


June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.


June 1, 2021  |  

SMRT Sequencing of DNA and RNA samples extracted from formalin-fixed and paraffin embedded tissues using adaptive focused acoustics by Covaris.

Recent advances in next-generation sequencing have led to an increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage for direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. FFPE samples often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and target enrichment. Additionally, the quality and quantity of the recovered DNA vary depending on the extraction methods used. We have evaluated the Covaris® Adaptive Focused Acoustics (AFA) system as a method for obtaining high molecular weight DNA suitable for SMRTbell™ template preparation and subsequent PacBio RS II sequencing. To test the Covaris system, we extracted DNA from normal kidney FFPE scrolls acquired from the Cooperative Human Tissue Network (CHTN), University of Pennsylvania. Damaged sites in the extracted DNA were repaired using a DNA Damage Repair step, and the treated DNA was constructed into SMRTbell libraries for sequencing on the PacBio System. Using the same repaired DNA, we also tested the efficiency of PCR in amplifying targets of up to 10 kb. The resulting amplicons were also constructed into SMRTbell templates for full-length sequencing on the PacBio System. We found the Adaptive Focused Acoustics (AFA) system by Covaris to be effective. This system is easy and simple to use, and the resulting DNA is compatible with SMRTbell library preparation for targeted and whole genome SMRT Sequencing. The data presented here demonstrates feasibility of SMRT Sequencing with FFPE samples.


June 1, 2021  |  

Barcoding strategies for multiplexing of samples using a long-read sequencing technology.

We have developed barcoding reagents and workflows for multiplexing amplicons or fragmented native genomic (DNA) prior to Single Molecule, Real-Time (SMRT) Sequencing. The long reads of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases (kb) of sequence. This feature is particularly useful in the context of mutational analysis or SNP confirmation, where a large number of samples are generated routinely. To validate this workflow, a set of 384 1.7-kb amplicons, each derived from variants of the Phi29 DNA polymerase gene, were barcoded during amplification, pooled, and sequenced on a single SMRT Cell. To demonstrate the applicability of the method to longer inserts, a library of 96 5-kb clones derived from the E. coli genome was sequenced.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. One popular, efficient method of profiling communities is to amplify and sequence the evolutionarily conserved 16S rRNA sequence. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost and species-level classification is often not possible. SMRT Sequencing easily spans the entire 1.5 kb 16S gene, and in combination with highly-accurate single-molecule sequences, can improve the identification of individual species in a metapopulation. However, when amplifying a mixture of sequences with close similarities, the products may contain chimeras, or recombinant molecules, at rates as high as 20-30%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of productive sequences. We investigated multiple factors that have been hypothesized to contribute to chimera formation, such as template damage, denaturing time before and during cycling, polymerase extension time, and reaction volume. Of the factors tested, we found two major related contributors to chimera formation: the amount of input template into the PCR reaction and the number of PCR cycles. Sequence errors generated during amplification and sequencing can also confound the analysis of complex populations. Circular Consensus Sequencing (CCS) can generate single-molecule reads with >99% accuracy, and the SMRT Analysis software provides filtering of these reads to >99.99% accuracies. Remaining substitution errors in these highly-filtered reads are likely dominated by mis-incorporations during amplification. Therefore, we compared the impact of several commercially-available high-fidelity PCR kits with full-length 16S amplification. We show results of our experiments and describe an optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and to generate highly accurate reference sequences.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However, this process still relies upon PCR amplification from a mixture of similar sequences, which may result in chimeras, or recombinant molecules, at rates upwards of 20%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of informative sequences. We investigated multiple factors that may contribute to chimera formation, such as template damage, denaturation time before and during thermocycling, polymerase extension time, and reaction volume. We found two related factors that contribute to chimera formation: the amount of input template into the PCR reaction, and the number of PCR cycles.A second problem that can confound analysis is sequence errors generated during amplification and sequencing. With the updated algorithm for circular consensus sequencing (CCS2), single-molecule reads can be filtered to 99.99% predicted accuracy. Substitution errors in these highly filtered reads may be dominated by mis-incorporations during amplification. Sequence differences in full-length 16S amplicons from several commercial high-fidelity PCR kits were compared.We show results of our experiments and describe our optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and generate highly accurate reference sequences.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 10-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a 12kb library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II System with three SMRT Cells 8M. The CCS algorithm was used to generate highly-accurate (average 99.8%) 11.4kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.82% and 96.70% against the GIAB truth set, and pbsv achieves 95.94% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 105kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly-accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.


June 1, 2021  |  

Detection and phasing of small variants in Genome in a Bottle samples with highly accurate long reads

Introduction: Long-read PacBio SMRT Sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw read error rates of 10-15%, it has remained difficult to call small variants from long reads. Recent improvements in library preparation, sequencing chemistry, and instrument yield have increased length, accuracy, and throughput of PacBio Circular Consensus (CCS) reads, resulting in 10-20 kb “HiFi” reads with mean read quality above 99%. Materials and Methods: We sequenced 11 kb size-selected libraries from the Genome in a Bottle (GIAB) human reference samples HG001, HG002, and HG005 to approximately 30-fold coverage on the Sequel II System with six SMRT Cells 8M each. The CCS algorithm was used to generate highly accurate (average 99.8%) reads of mean length 10-11 kb, which were then mapped to the hs37d5 reference with pbmm2. We detected small variants using Google DeepVariant and compared these variant calls to GIAB benchmarks. Small variants were then phased with WhatsHap. Results: With these long, highly accurate CCS reads, DeepVariant achieves high SNP and Indel accuracy against the GIAB benchmark truth set for all three reference samples. Using WhatsHap, small variants were phased into haplotype blocks with N50 from 82 to 146 kb. The improved mappability of long reads allows detection of variants in many medically relevant genes such as CYP2D6and PMS2that have proven ‘difficult-to-map’ with short reads. We show that small variant precision and recall remain high down to 15-fold coverage. Conclusions: These highly accurate long reads combine the mappability of noisy long reads with the accuracy and small variant detection utility of short reads, which will allow the detection and phasing of variants in regions that have proven recalcitrant to short read sequencing and variant detection.


June 1, 2021  |  

Copy-number variant detection with PacBio long reads

Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a healthy human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies. To comprehensively detect large variants in human genomes, we extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Together with insertion, deletion, inversion, duplication, and translocation calling from spanning reads, this allows pbsv to comprehensively detect large variants from a single data type.


June 1, 2021  |  

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 15-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II with two SMRT Cells 8M. The CCS algorithm was used to generate highly accurate (average 99.9%) 12.9kb reads, which were mapped to the hg19 reference with pbmm2. We detected small variants using Google DeepVariant with a model trained for CCS and phased the variants using WhatsHap. Structural variants were detected with pbsv. Variant calls were evaluated against Genome in a Bottle (GIAB) benchmarks. Results: With these reads, DeepVariant achieves SNP and Indel F1 scores of 99.70% and 96.59% against the GIAB truth set, and pbsv achieves 97.72% recall on structural variants longer than 50bp. Using WhatsHap, small variants were phased into haplotype blocks with 145kb N50. The improved mappability of long reads allows us to align to and detect variants in medically relevant genes such as CYP2D6 and PMS2 that have proven “difficult-to-map” with short reads. Conclusions: These highly accurate long reads combine the mappability and ability to detect structural variants of long reads with the accuracy and ability to detect small variants of short reads.


June 1, 2021  |  

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities of HiFi reads, there is no end-to-end workflow for the filtering and prioritization of variants uniquely detected with long reads for rare and undiagnosed disease research. We have developed a flexible, modular workflow and web portal for variant analysis from HiFi reads and applied it to a set of rare disease cases unsolved by short-read whole genome sequencing. We expect that broad application of long-read variant detection workflows will solve many more rare disease cases. We have made these tools available at https://github.com/williamrowell/pbRUGD-workflow, and we hope they serve a starting point for developing a robust analysis framework for long read variant detection for rare diseases.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.