Menu
April 21, 2020  |  

A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains.

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflect differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ), and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ, and PWD/PhJ), and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the International Immunogenetics Information System. In contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. In contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand inter-strain variation in models of antibody-mediated disease. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

A bird’s white-eye view on neosex chromosome evolution

Chromosomal organization is relatively stable among avian species, especially with regards to sex chromosomes. Members of the large Sylvioidea clade however have a pair of neo-sex chromosomes which is unique to this clade and originate from a parallel translocation of a region of the ancestral 4A chromosome on both W and Z chromosomes. Here, we took advantage of this unusual event to study the early stages of sex chromosome evolution. To do so, we sequenced a female (ZW) of two Sylvioidea species, a Zosterops borbonicus and a Z. pallidus. Then, we organized the Z. borbonicus scaffolds along chromosomes and annotated genes. Molecular phylogenetic dating under various methods and calibration sets confidently confirmed the recent diversification of the genus Zosterops (1-3.5 million years ago), thus representing one of the most exceptional rates of diversification among vertebrates. We then combined genomic coverage comparisons of five males and seven females, and homology with the zebra finch genome (Taeniopygia guttata) to identify sex chromosome scaffolds, as well as the candidate chromosome breakpoints for the two translocation events. We observed reduced levels of within-species diversity in both translocated regions and, as expected, even more so on the neoW chromosome. In order to compare the rates of molecular evolution in genomic regions of the autosomal-to-sex transitions, we then estimated the ratios of non-synonymous to synonymous polymorphisms (pN/pS) and substitutions (dN/dS). Based on both ratios, no or little contrast between autosomal and Z genes was observed, thus representing a very different outcome than the higher ratios observed at the neoW genes. In addition, we report significant changes in base composition content for translocated regions on the W and Z chromosomes and a large accumulation of transposable elements (TE) on the newly W region. Our results revealed contrasted signals of molecular evolution changes associated to these autosome-to-sex chromosome transitions, with congruent signals of a W chromosome degeneration yet a surprisingly weak support for a fast-Z effect.


April 21, 2020  |  

Construction and comparison of three reference-quality genome assemblies for soybean.

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and one of Glycine soja, the closest wild relative of G. max. The G. max assemblies are for widely used U.S. cultivars: the northern line ‘Williams 82’ (Wm82); and the southern line ‘Lee’. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 SNPs/kb between Wm82 and Lee, and 4.7 SNPs/kb between these lines and G. soja. SNP distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgressions and haplotype structure. Comparisons against the U.S. germplasm collection shows placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found ~40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and ~32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for soybean’s domestication and improvement, serving as a basis for future research and crop improvement efforts for this important crop species. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated at the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light-HL versus low light -LL) enabled to identify 10,724 nuclear genes, coding for 11,082 transcripts. Moreover 121 and 48 genes were respectively found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed peculiar features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL vs HL provide insights into the molecular basis for metabolic rearrangement in HL vs. LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway can be predicted and its upregulation upon HL exposure is observed, consistent with increased lipid amount under HL. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749-family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium and penicillin-resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs) and the BinL resolution system of the ß-lactamase transposon Tn552 An evolutionary intermediate ~42-kb non-conjugative plasmid pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline-resistance plasmid pT181. IS257 likely facilitated replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized non-conjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous CA-MSSA. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Genome-Wide Association Study of Growth and Body-Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea) Using ddRAD Sequencing.

Large yellow croaker (Larimichthys crocea) is an economically important marine fish species of China. Due to overfishing and marine pollution, the wild stocks of this croaker have collapsed in the past decades. Meanwhile, the cultured croaker is facing the difficulties of reduced genetic diversity and low growth rate. To explore the molecular markers related to the growth traits of croaker and providing the related SNPs for the marker-assisted selection, we used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic bases of growth traits in a cultured population and identify the SNPs that associated with important growth traits by GWAS. A total of 220 individuals were genotyped by ddRAD sequencing. After quality control, 27,227 SNPs were identified in 220 samples and used for GWAS analysis. We identified 13 genome-wide significant associated SNPs of growth traits on 8 chromosomes, and the beta P of these SNPs ranged from 0.01 to 0.86. Through the definition of candidate regions and gene annotation, candidate genes related to growth were identified, including important regulators such as fgf18, fgf1, nr3c1, cyp8b1, fabp2, cyp2r1, ppara, and ccm2l. We also identified SNPs and candidate genes that significantly associated with body shape, including bmp7, col1a1, col11a2, and col18a1, which are also economically important traits for large yellow croaker aquaculture. The results provided insights into the genetic basis of growth and body shape in large yellow croaker population and would provide reliable genetic markers for molecular marker-assisted selection in the future. Meanwhile, the result established a basis for our subsequent fine mapping and related gene study.


April 21, 2020  |  

Resistome and a Novel blaNDM-1-Harboring Plasmid of an Acinetobacter haemolyticus Strain from a Children’s Hospital in Puebla, Mexico.

Acinetobacter calcoaceticus-baumannii complex isolates have been frequently associated with hospital and community infections, with A. baumannii being the most common. Other Acinetobacter spp. not belonging to this complex also cause infections in hospital settings, and the incidence has increased over the past few years. Some species of the Acinetobacter genus possess a great diversity of antibiotic resistance mechanisms, such as efflux pumps, porins, and resistance genes that can be acquired and disseminated by mobilizable genetic elements. By means of whole-genome sequencing, we describe in the clinical Acinetobacter haemolyticus strain AN54 different mechanisms of resistance that involve blaOXA-265, blaNDM-1, aphA6, aac(6′)-Ig, and a resistance-nodulation-cell division-type efflux pump. This strain carries six plasmids, of which the plasmid pAhaeAN54e contains blaNDM-1 in a Tn125-like transposon that is truncated at the 3′ end. This strain also has an insertion sequence IS91 and seven genes encoding hypothetical proteins. The pAhaeAN54e plasmid is nontypable and different from other plasmids carrying blaNDM-1 that have been reported in Mexico and other countries. The presence of these kinds of plasmids in an opportunistic pathogen such as A. haemolyticus highlights the role that these plasmids play in the dissemination of antibiotic resistance genes, especially against carbapenems, in Mexican hospitals.


April 21, 2020  |  

Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi. © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.


April 21, 2020  |  

Transcriptional initiation of a small RNA, not R-loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae.

Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal Av frequencies. Using chromatin immunoprecipitation (ChIP) assays, we show that cellular G4s are less abundant when sRNA transcription is lower. In addition, using ChIP, we demonstrate that the G4-sRNA forms a stable RNA:DNA hybrid (R-loop) with its template strand. However, modulating R-loop levels by controlling RNase HI expression does not alter G4 abundance quantified through ChIP. Since pilin Av frequencies were not altered when modulating R-loop levels by controlling RNase HI expression, we conclude that transcription of the sRNA is necessary, but stable R-loops are not required to promote pilin Av. © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase and glutathione peroxidase, might be related to the synthesis of AgNPs. Meanwhile, many additional genes associated with synthesis of AgNPs such as protein-disulfide isomerase, c-type cytochrome, glutathione synthase and dehydrogenase reductase were also identified.


April 21, 2020  |  

Acquired N-Linked Glycosylation Motifs in B-Cell Receptors of Primary Cutaneous B-Cell Lymphoma and the Normal B-Cell Repertoire.

Primary cutaneous follicle center lymphoma (PCFCL) is a rare mature B-cell lymphoma with an unknown etiology. PCFCL resembles follicular lymphoma (FL) by cytomorphologic and microarchitectural criteria. FL B cells are selected for N-linked glycosylation motifs in their B-cell receptors (BCRs) that are acquired during continuous somatic hypermutation. The stimulation of mannosylated BCR by lectins on the tumor microenvironment is therefore a candidate driver in FL pathogenesis. We investigated whether the same mechanism could play a role in PCFCL pathogenesis. Full-length functional variable, diversity, and joining gene sequences of 18 PCFCL and 8 primary cutaneous diffuse large B-cell lymphoma, leg-type were identified by unbiased Anchoring Reverse Transcription of Immunoglobulin Sequences and Amplification by Nested PCR and BCR reconstruction from RNA sequencing data. Low BCR variation demonstrated negligible ongoing somatic hypermutation in PCFCL and primary cutaneous diffuse large B-cell lymphoma, leg-type, and indicated that the PCFCL microarchitecture does not act as a functional germinal center. Similar to FL but in contrast to primary cutaneous diffuse large B-cell lymphoma, leg-type, BCR genes of 15 PCFCLs (83%) had acquired N-linked glycosylation motifs. These motifs were located at the BCR positions converted to N-linked glycosylation motifs in normal B-cell repertoires with low prevalence but mostly at different positions than those found in FL. The cutaneous localization of PCFCL might suggest a role for lectins from commensal skin bacteria in PCFCL lymphomagenesis.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where a high depth of reads is not always capable to correct for these errors. In this study, we compared the genotyping of mitochondrial DNA variants in three samples using PacBio’s Sequel (Pacific Biosciences Inc., Menlo Park, CA, USA) long-read sequencing and illumina’s HiSeqX10 (illumine Inc., San Diego, CA, USA) short-read sequencing data. We concluded that, despite the differences in the type and frequency of errors in the long-reads sequencing, its accuracy is still comparable to that of short-reads for genotyping short nuclear variants; due to the randomness of errors in long reads, a lower coverage, around 37 reads, can be sufficient to correct for these random errors.


April 21, 2020  |  

Long metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity

High-throughput environmental DNA metabarcoding has revolutionized the analysis of microbial diversity, but this approach is generally restricted to amplicon sizes below 500 base pairs. These short regions contain limited phylogenetic signal, which makes it impractical to use environmental DNA in full phylogenetic inferences. However, new long-read sequencing technologies such as the Pacific Biosciences platform may provide sufficiently large sequence lengths to overcome the poor phylogenetic resolution of short amplicons. To test this idea, we amplified soil DNA and used PacBio Circular Consensus Sequencing (CCS) to obtain a ~4500 bp region of the eukaryotic rDNA operon spanning most of the small (18S) and large subunit (28S) ribosomal RNA genes. The CCS reads were first treated with a novel curation workflow that generated 650 high-quality OTUs containing the physically linked 18S and 28S regions of the long amplicons. In order to assign taxonomy to these OTUs, we developed a phylogeny-aware approach based on the 18S region that showed greater accuracy and sensitivity than similarity-based and phylogenetic placement-based methods using shorter reads. The taxonomically-annotated OTUs were then combined with available 18S and 28S reference sequences to infer a well-resolved phylogeny spanning all major groups of eukaryotes, allowing to accurately derive the evolutionary origin of environmental diversity. A total of 1019 sequences were included, of which a majority (58%) corresponded to the new long environmental CCS reads. Comparisons to the 18S-only region of our amplicons revealed that the combined 18S-28S genes globally increased the phylogenetic resolution, recovering specific groupings otherwise missing. The long-reads also allowed to directly investigate the relationships among environmental sequences themselves, which represents a key advantage over the placement of short reads on a reference phylogeny. Altogether, our results show that long amplicons can be treated in a full phylogenetic framework to provide greater taxonomic resolution and a robust evolutionary perspective to environmental DNA.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.