April 21, 2020  |  

Characteristics of crude oil-degrading bacteria Gordonia iterans isolated from marine coastal in Taean sediment.

Crude oil is a major pollutant of marine and coastal ecosystems, and it causes environmental problems more seriously. It is believed ultimate and complete degradation is accomplished mainly by microorganisms. In this study, we aim to search out for bacterial strains with high ability in degrading crude oil. From sediments contaminated by the petroleum spilled in 2007, an accident in Taean, South Korea, we isolated thirty-one bacterial strains in total with potential application in crude oil contamination remediation. In terms of removal percentage after 7 days, one of the strains, Co17, showed the highest removal efficiency with 84.2% of crude oil in Bushnell-Haas media. The Co17 strain even exhibited outstanding ability removing crude oil at a high salt concentration. Through the whole genome sequencing annotation results, many genes related with n-alkane degradation in the genome of Gordonia sp. Co17, revealed alkane-1-monooxygenase, alcohol dehydrogenase, and Baeyer-Villiger monooxygenase. Specially, for confirmation of gene-level, alkB gene encoding alkane hydroxylase (alkane-1-monooxygenase) was found in the strain Co17. The expression of alkB upregulated 125-fold after 18 hr accompany with the removal of n-alkanes of 48.9%. We therefore propose the strain Gordonia iterans Co17, isolated from crude oil-contaminated marine sediment, could be used to offer a new strategy for bioremediation with high efficiency. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.