Menu
April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Exceptional subgenome stability and functional divergence in allotetraploid teff, the primary cereal crop in Ethiopia

Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Despite its overall importance to small-scale farmers and communities in Africa, teff suffers from low production compared to other cereals because of limited intensive selection and molecular breeding. Here we report a chromosome-scale genome assembly of allotetraploid teff (variety textquoteleftDabbitextquoteright) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintained as syntenic gene pairs. Through analyzing the history of transposable element activity, we estimate the teff polyploidy event occurred ~1.1 million years ago (mya) and the two subgenomes diverged ~5.0 mya. Despite this divergence, we detected no large-scale structural rearrangements, homoeologous exchanges, or bias gene loss, contrasting most other allopolyploid plant systems. The exceptional subgenome stability observed in teff may enable the ubiquitous and recurrent polyploidy within Chloridoideae, possibly contributing to the increased resilience and diversification of these grasses. The two teff subgenomes have partitioned their ancestral functions based on divergent expression patterns among homoeologous gene pairs across a diverse expression atlas. The most striking differences in homoeolog expression bias are observed during seed development and under abiotic stress, and thus may be related to agronomic traits. Together these genomic resources will be useful for accelerating breeding efforts of this underutilized grain crop and for acquiring fundamental insights into polyploid genome evolution.


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Full-length mRNA sequencing and gene expression profiling reveal broad involvement of natural antisense transcript gene pairs in pepper development and response to stresses.

Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made towards understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57862 high-quality full-length mRNA sequences derived from 18362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Draft Genome Assembly and Annotation of Red Raspberry Rubus Idaeus

The red raspberry, Rubus idaeus, is widely distributed in all temperate regions of Europe, Asia, and North America and is a major commercial fruit valued for its taste, high antioxidant and vitamin content. However, Rubus breeding is a long and slow process hampered by limited genomic and molecular resources. Genomic resources such as a complete genome sequencing and transcriptome will be of exceptional value to improve research and breeding of this high value crop. Using a hybrid sequence assembly approach including data from both long and short sequence reads, we present the first assembly of the Rubus idaeus genome (Joan J. variety). The de novo assembled genome consists of 2,145 scaffolds with a genome completeness of 95.3% and an N50 score of 638 KB. Leveraging a linkage map, we anchored 80.1% of the genome onto seven chromosomes. Using over 1 billion paired-end RNAseq reads, we annotated 35,566 protein coding genes with a transcriptome completeness score of 97.2%. The Rubus idaeus genome provides an important new resource for researchers and breeders.


April 21, 2020  |  

BjuWRR1, a CC-NB-LRR gene identified in Brassica juncea, confers resistance to white rust caused by Albugo candida.

BjuWRR1, a CNL-type R gene, was identified from an east European gene pool line of Brassica juncea and validated for conferring resistance to white rust by genetic transformation. White rust caused by the oomycete pathogen Albugo candida is a significant disease of crucifer crops including Brassica juncea (mustard), a major oilseed crop of the Indian subcontinent. Earlier, a resistance-conferring locus named AcB1-A5.1 was mapped in an east European gene pool line of B. juncea-Donskaja-IV. This line was tested along with some other lines of B. juncea (AABB), B. rapa (AA) and B. nigra (BB) for resistance to six isolates of A. candida collected from different mustard growing regions of India. Donskaja-IV was found to be completely resistant to all the tested isolates. Sequencing of a BAC spanning the locus AcB1-A5.1 showed the presence of a single CC-NB-LRR protein encoding R gene. The genomic sequence of the putative R gene with its native promoter and terminator was used for the genetic transformation of a susceptible Indian gene pool line Varuna and was found to confer complete resistance to all the isolates. This is the first white rust resistance-conferring gene described from Brassica species and has been named BjuWRR1. Allelic variants of the gene in B. juncea germplasm and orthologues in the Brassicaceae genomes were studied to understand the evolutionary dynamics of the BjuWRR1 gene.


April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation.

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~?1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.


April 21, 2020  |  

Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens.

Culture-based molecular identification methods have revolutionized detection of pathogens, yet these methods are slow and may yield inconclusive results from environmental materials. The second-generation sequencing tools have much-improved precision and sensitivity of detection, but these analyses are costly and may take several days to months. Of the third-generation sequencing techniques, the portable MinION device (Oxford Nanopore Technologies) has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performances of two third-generation sequencing instruments, MinION and Sequel (Pacific Biosciences), in identification and diagnostics of fungal and oomycete pathogens from conifer (Pinaceae) needles and potato (Solanum tuberosum) leaves and tubers. We demonstrate that the Sequel instrument is efficient for metabarcoding of complex samples, whereas MinION is not suited for this purpose due to a high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms and other associated organisms from plant tissues following both amplicon-based and PCR-free metagenomics approaches. Using the metagenomics approach with shortened DNA extraction and incubation times, we performed the entire MinION workflow, from sample preparation through DNA extraction, sequencing, bioinformatics, and interpretation, in 2.5 h. We advocate the use of MinION for rapid diagnostics of pathogens and potentially other organisms, but care needs to be taken to control or account for multiple potential technical biases.IMPORTANCE Microbial pathogens cause enormous losses to agriculture and forestry, but current combined culturing- and molecular identification-based detection methods are too slow for rapid identification and application of countermeasures. Here, we develop new and rapid protocols for Oxford Nanopore MinION-based third-generation diagnostics of plant pathogens that greatly improve the speed of diagnostics. However, due to high error rate and technical biases in MinION, the Pacific BioSciences Sequel platform is more useful for in-depth amplicon-based biodiversity monitoring (metabarcoding) from complex environmental samples.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado (Persea americana).

Avocado (Persea americana Mill.) is an economically important crop because of its high nutritional value. However, the absence of a sequenced avocado reference genome has hindered investigations of secondary metabolism. For next-generation high-throughput transcriptome sequencing, we obtained 365,615,152 and 348,623,402 clean reads as well as 109.13 and 104.10 Gb of sequencing data for avocado mesocarp and seed, respectively, during five developmental stages. High-quality reads were assembled into 100,837 unigenes with an average length of 847.40 bp (N50 = 1725 bp). Additionally, 16,903 differentially expressed genes (DEGs) were detected, 17 of which were related to carotenoid biosynthesis. The expression levels of most of these 17 DEGs were higher in the mesocarp than in the seed during five developmental stages. In this study, the avocado mesocarp and seed transcriptome were also sequenced using single-molecule long-read sequencing to acquired 25.79 and 17.67 Gb clean data, respectively. We identified 233,014 and 238,219 consensus isoforms in avocado mesocarp and seed, respectively. Furthermore, 104 and 59 isoforms were found to correspond to the putative 11 carotenoid biosynthetic-related genes in the avocado mesocarp and seed, respectively. The isoform numbers of 10 out of the putative 11 genes involved in the carotenoid biosynthetic pathway were higher in the mesocarp than those in the seed. Besides, alpha- and beta-carotene contents in the avocado mesocarp and seed during five developmental stages were also measured, and they were higher in the mesocarp than in the seed, which validated the results of transcriptome profiling. Gene expression changes and the associated variations in gene dosage could influence carotenoid biosynthesis. These results will help to further elucidate carotenoid biosynthesis in avocado.


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China.

Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization.Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Survey of the Bradysia odoriphaga Transcriptome Using PacBio Single-Molecule Long-Read Sequencing.

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


April 21, 2020  |  

A chromosome-scale genome assembly of cucumber (Cucumis sativus L.).

Accurate and complete reference genome assemblies are fundamental for biological research. Cucumber is an important vegetable crop and model system for sex determination and vascular biology. Low-coverage Sanger sequences and high-coverage short Illumina sequences have been used to assemble draft cucumber genomes, but the incompleteness and low quality of these genomes limit their use in comparative genomics and genetic research. A high-quality and complete cucumber genome assembly is therefore essential.We assembled single-molecule real-time (SMRT) long reads to generate an improved cucumber reference genome. This version contains 174 contigs with a total length of 226.2 Mb and an N50 of 8.9 Mb, and provides 29.0 Mb more sequence data than previous versions. Using 10X Genomics and high-throughput chromosome conformation capture (Hi-C) data, 89 contigs (~211.0 Mb) were directly linked into 7 pseudo-chromosome sequences. The newly assembled regions show much higher guanine-cytosine or adenine-thymine content than found previously, which is likely to have been inaccessible to Illumina sequencing. The new assembly contains 1,374 full-length long terminal retrotransposons and 1,078 novel genes including 239 tandemly duplicated genes. For example, we found 4 tandemly duplicated tyrosylprotein sulfotransferases, in contrast to the single copy of the gene found previously and in most other plants.This high-quality genome presents novel features of the cucumber genome and will serve as a valuable resource for genetic research in cucumber and plant comparative genomics. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.