2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.
Each human genome has thousands of structural variants compared to the reference assembly, up to 85% of which are difficult or impossible to detect with Illumina short reads and are only visible with long, multi-kilobase reads. The PacBio RS II and Sequel single molecule, real-time (SMRT) sequencing platforms have made it practical to generate long reads at high throughput. These platforms enable the discovery of structural variants just as short-read platforms did for single nucleotide variants. Numerous software algorithms call structural variants effectively from PacBio long reads, but algorithm sensitivity is lower for insertion variants and all heterozygous variants. Furthermore,…
Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, chikungunya, and other diseases. The outbreak of Zika in the Americas, which can cause microcephaly in the fetus of infected women, adds urgency to the need for a high-quality reference genome in order to better understand the organism’s biology and its role in transmitting human disease. We describe the first diploid assembly of an insect genome, using SMRT sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO…
Aedes aegypti is a tropical and subtropical mosquito vector for Zika, yellow fever, dengue fever, and chikungunya. We describe the first diploid assembly of an insect genome, using SMRT Sequencing and the open-source assembler FALCON-Unzip. This assembly has high contiguity (contig N50 1.3 Mb), is more complete than previous assemblies (Length 1.45 Gb with 87% BUSCO genes complete), and is high quality (mean base >QV30 after polishing). Long-range haplotype structure, in some cases encompassing more than 4 Mb of extremely divergent homologous sequence with dramatic differences in coding sequence content, is resolved using a combination of the FALCON-Unzip assembler, genome…
A high quality reference genome is an essential resource for plant and animal breeding and functional and evolutionary studies. The common hop (Humulus lupulus, Cannabaceae) is an economically important crop plant used to flavor and preserve beer. Its genome is large (flow cytometrybased estimates of diploid length >5.4Gb1), highly repetitive, and individual plants display high levels of heterozygosity, which make assembly of an accurate and contiguous reference genome challenging with conventional short-read methods. We present a contig assembly of Cascade Hops using PacBio long reads and the diploid genome assembler, FALCON-Unzip2. The assembly has dramatically improved contiguity and completeness over…
Introduction: Long-read PacBio SMRT Sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw read error rates of 10-15%, it has remained difficult to call small variants from long reads. Recent improvements in library preparation, sequencing chemistry, and instrument yield have increased length, accuracy, and throughput of PacBio Circular Consensus (CCS) reads, resulting in 10-20 kb “HiFi” reads with mean read quality above 99%. Materials and Methods: We sequenced 11 kb size-selected libraries from the Genome in a Bottle (GIAB) human reference samples HG001, HG002, and HG005 to approximately 30-fold coverage on the…
As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of…
PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.
This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly. This tutorial covers features of SMRT Link v5.0.0.
The goal of this session is to help users complete their PacBio genome assembly and generate the best resource for their research. Kingan begins with a brief review of the diploid assembly process used by FALCON and FALCON-Unzip, highlighting the enhanced phasing of the Unzip module, and concluding with recommendations for genome polishing. Next, she explores how heterozygosity can influence the assembly process and how read coverage depth along the assembly can reveal important characteristics of assembly structure. Kingan then recommends approaches, including specific tools, that can be used to quality filter and curate the assembly, including annotation-, coverage-, and…
Motivation: Third-generation sequencing technologies can sequence long reads, which is advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream analysis. This difficulty has motivated the development of many long read error correction tools, which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the range of software covered or diversity of evaluation measures used. Results: In this paper, we present a categorization and review of long read error correction methods,…
Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…
Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently…
Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens…
Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb.…