X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, January 6, 2021

User Group Meeting: Lowering input requirements

To start Day 2 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on lowering DNA input amounts for SMRT Sequencing workflows. Updates include a more robust shearing method, a revised AMPure size selection, and introduction of multiplexing low input samples. Finally, the use of HiFi sequencing with low input results in a more complete genome assembly. Jonas closes by mentioning that the low DNA input protocol is now available and further advancements to lower input requirements even more will open opportunities for different samples, such as cancer needle biopsies.

Read More »

Wednesday, January 6, 2021

Webinar: Sequencing 101 – How long-read sequencing improves access to genetic information

In this webinar, Kristin Mars, Sequencing Specialist, PacBio, presents an introduction to PacBio’s technology and its applications followed by a panel discussion among sequencing experts. The panel discussion addresses such things as what long reads are and how are they useful, what differentiates PacBio long-read sequencing from other technologies, and the applications PacBio offers and how they can benefit scientific research.

Read More »

Wednesday, January 6, 2021

PAG Conference: The impact of highly accurate PacBio sequence data on the assembly of a tetraploid rose

In this presentation at PAG 2020, Bart Nijland of Genetwister Technologies explains how his team set out to make a haplotype-aware assembly of the highly complex tetraploid Rosa x hybrida L. genome in order to capture its full range of genetic variation. HiFi reads generated from PacBio’s Sequel II System have made it possible to parse out critical information from many of the plant’s parental genes.

Read More »

Wednesday, January 6, 2021

AGBT Presentation: Generating high quality human reference assemblies with PacBio sequencing

Tina Graves-Lindsay from the McDonnell Genome Institute reports at AGBT 2020 on how her team is using PacBio sequencing to produce reference-grade human genome assemblies. With highly accurate HiFi reads, no error correction step is needed during the sequencing and analysis process, and they can produce reference-grade assemblies with half the sequence coverage needed before. They are now generating diploid assemblies and will be contributing to the human pangenome reference project.

Read More »

Wednesday, January 6, 2021

PAG Conference: PacBio update on products and HiFi applications

In this talk at PAG 2020, PacBio Plant and Animal Sciences Marketing Manager Michelle Vierra discusses recent updates to Single Molecule, Real-Time (SMRT) Sequencing technology, including the Sequel II System, updated protocols for low-input as well as other upcoming developments.

Read More »

Wednesday, January 6, 2021

Webinar: Unbiased, efficient characterization of metagenome functions with PacBio HiFi sequencing

Understanding interactions among plants and the complex communities of organisms living on, in and around them requires more than one experimental approach. A new method for de novo metagenome assembly, PacBio HiFi sequencing, has unique strengths for determining the functional capacity of metagenomes. With HiFi sequencing, the accuracy and median read length of unassembled data outperforms the quality metrics for many existing assemblies generated with other technologies, enabling cost-competitive recovery of full-length genes and operons even from rare species. When paired with the ability to close the genomes of even challenging isolates like Xanthomonas, the PacBio Sequel II System is…

Read More »

Wednesday, January 6, 2021

Webinar: Bioinformatics lunch & learn – Better assemblies of bacterial genomes and plasmids with the new microbial assembly pipeline in SMRT Link v8.0

Microbial Assembly is our latest pipeline, specifically designed to assemble bacterial genomes (between 2 and 10 Mb) and plasmids. This pipeline includes the implementation of a new, circular-aware read alignment tool (Raptor), among other algorithmic improvements, which will be covered in this webinar. The topics covered include, staged assembly of bacterial chromosomes and plasmids, implementation of Raptor, a circular-aware read aligner, himeric read detection, origin of replication orientation, troubleshooting and more.

Read More »

Wednesday, January 6, 2021

PAG Conference: Endless forms: Genomes from the Darwin Tree of Life Project

Mark Blaxter, project lead of the Sanger Institute’s Darwin Tree of Life, shared an update of the ambitious effort to sequence all 60,000 species believed to be on the British Isles over the next 12 years in this presentation at the PAG 2020 Conference. The Sanger team has already generated data for 94 species, including 44 new moth and butterfly (Lepidoptera) PacBio assemblies, which Blaxter describes in this presentation.

Read More »

Wednesday, January 6, 2021

Webinar: Bioinformatics lunch & learn – HiFi assembly

The release of the PacBio Sequel II System in 2019 brought dramatic throughput improvements and protocols for producing a new data type, highly accurate long reads or HiFi reads. PacBio is the only sequencing technology to offer highly accurate long reads (HiFi reads) that provide Sanger-quality accuracy (>99%) with the read lengths needed for assembly of complex genomes. The long length and high accuracy of HiFi reads makes them the ideal starting point for many applications, and one area of major interest is genome assembly. HiFi assembly is faster, cheaper, more accurate, and easier to phase than standard long-read assembly.…

Read More »

Wednesday, January 6, 2021

Webinar: A HiFi View – Sequencing the gut microbiome with highly accurate long reads

In this webinar, Dr. Ashby gives attendees a brief update on PacBio’s metagenomics solutions on the Sequel II System. Then, Dr. Ma, University of Maryland School of Medicine, discusses her work using long read sequencing to identify high-resolution microbial biomarkers associated with leaky gut syndrome in premature infants. Finally, Dr. Weinstock, The Jackson Laboratory, talks about the potential of highly accurate long reads to enable strain-level resolution of the human gut microbiome by resolving intraspecies variation in multiple copies of the 16S gene.

Read More »

Wednesday, January 6, 2021

Webinar: Long HiFi reads for high-quality genome assemblies

In this LabRoots webinar, Jonas Korlach the CSO of PacBio provides an introduction to PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level andhave allowed for advances in de novo genome assemblies. Korlach reviews the characteristics of HiFi read data obtained with the Sequel II System, followed by examples of high-quality genome assemblies for human, plant and animal genomes including the different aspects of evaluating genome assemblies (contiguity, accuracy, completeness and allelic phasing) and illustrates their high quality by examples of resolving centromeres, telomeres, segmental duplications…

Read More »

Wednesday, January 6, 2021

PacBio Workshop: Understanding the biology of genomes with HiFi sequencing

The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…

Read More »

Wednesday, January 6, 2021

Webinar: Beyond a single reference genome – The advantages of sequencing multiple individuals

Hear how scientists have used PacBio sequencing to develop pangenome collections and to study population genetics of plant and animal species to power their research. Learn about the advantages of sequencing multiple individuals to gain comprehensive views of genetic variation, and understand the speed, cost, and accuracy benefits of using highly accurate long reads (HiFi reads) to sequence your species of interest.

Read More »

1 2 3 4 5 24

Subscribe for blog updates:

Archives