Menu
June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Whole genome sequencing and epigenome characterization of cancer cells using the PacBio platform.

The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for the first time cancer genomes of both drug-sensitive and drug-resistant PC- 9 cells using long-read PacBio sequencing. The PacBio data allowed us to generate a high-quality, de novo assembly of this cancer genome, enabling the detection of forms of genomic variations at all size scales, including SNPs, structural variations, copy number alterations, gene fusions, and translocations. The data simultaneously provide a global view of epigenetic DNA modifications such as methylation. We will present findings on large-scale changes in the methylation status across the cancer genome as a function of drug sensitivity.


June 1, 2021  |  

MinHash for overlapping and assembly

2015 SMRT Informatics Developers Conference Presentation Slides: Sergey Koren of National Biodefense Analysis and Countermeasures Center (NBACC) provided an overview of the MHAP algorithm, a method for assembling large genomes with Sing-Molecule Sequencing and locality sensitive hashing. Using MHAP, Koren produced a human assembly (CHM1) with a contig N50 of >23 Mb.


June 1, 2021  |  

Building a platinum human genome assembly from single haplotype human genomes generated from long molecule sequencing

The human reference sequence has provided a foundation for studies of genome structure, human variation, evolutionary biology, and disease. At the time the reference was originally completed there were some loci recalcitrant to closure; however, the degree to which structural variation and diversity affected our ability to produce a representative genome sequence at these loci was still unknown. Many of these regions in the genome are associated with large, repetitive sequences and exhibit complex allelic diversity such producing a single, haploid representation is not possible. To overcome this challenge, we have sequenced DNA from two hydatidiform moles (CHM1 and CHM13), which are essentially haploid. CHM13 was sequenced with the latest PacBio technology (P6-C5) to 52X genome coverage and assembled using Daligner and Falcon v0.2 (GCA_000983455.1, CHM13_1.1). Compared to the first mole (CHM1) PacBio assembly (GCA_001007805.1, 54X) contig N50 of 4.5Mb, the contig N50 of CHM13_1.1 is almost 13Mb, and there is a 13-fold reduction in the number of contigs. This demonstrates the improved contiguity of sequence generated with the new chemistry. We annotated 50,188 RefSeq transcripts of which only 0.63% were split transcripts, and the repetitive and segmental duplication content was within the expected range. These data all indicate an extremely high quality assembly. Additionally, we sequenced CHM13 DNA using Illumina SBS technology to 60X coverage, aligned these reads to the GRCh37, GRCh38, and CHM13_1.1 assemblies and performed variant calling using the SpeedSeq pipeline. The number of single nucleotide variants (SNV) and indels was comparable between GRCh37 and GRCh38. Regions that showed increased SNV density in GRCh38 compared to GRCh37 could be attributed to the addition of centromeric alpha satellite sequence to the reference assembly. Alternatively, regions of decreased SNV density in GRCh38 were concentrated in regions that were improved from BAC based sequencing of CHM1 such as 1p12 and 1q21 containing the SRGAP2 gene family. The alignment of PacBio reads to GRCh37 and GRCh38 assemblies allowed us to resolve complex loci such as the MHC region where the best alignment was to the DBB (A2-B57-DR7) haplotype. Finally, we will discuss how combining the two high quality mole assemblies can be used for benchmarking and novel bioinformatics tool development.


June 1, 2021  |  

SMRT Sequencing of the alala genome

Single Molecule Real-Time (SMRT) Sequencing was used to generate long reads for whole genome shotgun sequencing of the genome of the`alala (Hawaiian crow). The ‘alala is endemic to Hawaii, and the only surviving lineage of the crow family, Corvidae, in the Hawaiian Islands. The population declined to less than 20 individuals in the 1990s, and today this charismatic species is extinct in the wild. Currently existing in only two captive breeding facilities, reintroduction of the ‘alala is scheduled to begin in the Fall of 2016. Reintroduction efforts will be assisted by information from the ‘alala genome generated and assembled by SMRT Technology, which will allow detailed analysis of genes associated with immunity, behavior, and learning. Using SMRT Sequencing, we present here best practices for achieving long reads for whole genome shotgun sequencing for complex plant and animal genomes such as the ‘alala genome. With recent advances in SMRTbell library preparation, P6-C4 chemistry and 6-hour movies, the number of useable bases now exceeds 1 Gb per SMRT Cell. Read lengths averaging 10 – 15 kb can be routinely achieved, with the longest reads approaching 70 kb. Furthermore, > 25% of useable bases are in reads greater than 30 kb, advantageous for generating contiguous draft assemblies of contig N50 up to 5 Mb. De novo assemblies of large genomes are now more tractable using SMRT Sequencing as the standalone technology. We also present guidelines for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under purifying selection, suggesting they are beneficial to the host. To characterize EVE biogenesis in a tractable system, we sequenced the Ae. aegypti cell line, Aag2, to 58-fold coverage and present a de novo assembly of the genome. The assembly contains 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, consisting of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify EVEs in the genome homologous to a range of extant viruses, many of which cluster in these regions of repetitive DNA. The contiguous assembly allows for more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing.


June 1, 2021  |  

Improving the goat long-read assembly with optical mapping and Hi-C scaffolding

Reference genome assemblies provide important context in genetics by standardizing the order of genes and providing a universal set of coordinates for individual nucleotides. Often due to the high complexity of genic regions and higher copy number of genes involved in immune function, immunity-related genes are often misassembled in current reference assemblies. This problem is particularly ubiquitous in the reference genomes of non-model organisms as they often do not receive the years of curation necessary to resolve annotation and assembly errors. In this study, we reassemble a reference genome of the goat (Capra hircus) using modern PacBio technology in tandem with BioNano Genomics Irys optical maps and Lachesis clustering in order to provide a high quality reference assembly without the need for extensive filtering. Initial PacBio assemblies using P5C4 chemistry achieved contig N50’s of 4 Megabases and a BUSCO completion score of 84.0%, which is comparable to several finished model organism reference assemblies. We used BioNano Genomics’ Irys platform to generate 336 scaffolds from this data with a scaffold N50 of 24 megabases and total genome coverage of 98%. Lachesis interaction maps were used with a clustering algorithm to associate Irys scaffolds into the expected 30 chromosome physical maps. Comparisons of the initial hybrid scaffolds generated from the long read contigs and optical map information to a previously generated RH map revealed that the entirety of the Goat autosome 20 physical map was contained within one scaffold. Additionally, the BioNano scaffolding resolved several difficult regions that contained genes related to innate immunity which were problem regions in previous reference genome assemblies.


June 1, 2021  |  

Progress Toward a Low Budget Reference Grade Genome Assembly

Reference quality de novo genome assemblies were once solely the domain of large, well-funded genome projects. While next-generation short read technology removed some of the cost barriers, accurate chromosome-scale assembly remains a real challenge. Here we present efforts to de novo assemble the goat (Capra hircus) genome. Through the combination of single-molecule technologies from Pacific Biosciences (sequencing) and BioNano Genomics (optical mapping) coupled with high-throughput chromosome conformation capture sequencing (Hi-C), an inbred San Clemente goat genome has been sequenced and assembled to a high degree of completeness at a relatively modest cost. Starting with 38 million PacBio reads, we integrated the MinHash Alignment Process (MHAP) with the Celera Assembler (CA) to produce an assembly composed of 3110 contigs with a contig N50 size of 4.7 Mb. This assembly was scaffolded with BioNano genome maps derived from a single IrysChip into 333 scaffolds with an N50 of 23.1 Mb including the complete scaffolding of chromosome 20. Finally, cis-chromosome associations were determined by Hi-C, yielding complete reconstruction of all autosomes into single scaffolds with a final N50 of 91.7 Mb. We hope to demonstrate that our methods are not only cost effective, but improve our ability to annotate challenging genomic regions such as highly repetitive immune gene clusters.


June 1, 2021  |  

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software: (1) whole genome sequencing data from a highly repetitive diploid fungal (Clavicorona pyxidata) and (2) whole genome sequencing data from an F1 hybrid from two inbred Arabidopsis strains: Cvi-0 and Col-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs (haplotype specific contigs) of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina® platform. For the ArabidopsisF1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. The current Falcon-Unzip method will lead to understand how to solve more difficult polyploid genome assembly problems and improve the computational efficiency for large genome assemblies. Based on this work, we can develop a pipeline enabling routinely assemble diploid or polyploid genomes as haplotigs, representing a comprehensive view of the genomes that can be studied with the information at hand.


June 1, 2021  |  

Un-zipping diploid genomes – revealing all kinds of heterozygous variants from comprehensive hapltotig assemblies

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON (https://github.com/PacificBiosciences/FALCON), we developed new algorithms and software (FALCON-unzip) for de novo haplotype reconstructions from SMRT Sequencing data. We apply the algorithms and the prototype software for (1) a highly repetitive diploid fungal genome (Clavicorona pyxidata) and (2) an F1 hybrid from two inbred Arabidopsis strains: CVI-0 and COL-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina platform. For the Arabidopsis F1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. Finally, we applied this method to WGS human data sets to demonstrate the potential for resolving complicated, medically-relevant genomic regions.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue and Zika viruses by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear. Recent publications have highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient and at least some EVEs are under purifying selection, which suggests that they are beneficial to the host. In order characterize EVE biogenesis in a tractable system we sequenced the Ae. aegypti cell line, Aag2, to 58X coverage and here present a de novo assembly of the genome. The assembly consists of 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, made up of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify a plethora of EVEs in the genome homologous to a diverse range of extant viruses, many of which cluster in these regions of highly repetitive DNA. The highly contiguous nature of this assembly allows for a more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing. Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes widespread and debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever, organ failure, and encephalitis; and yet, mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for tolerance to viral infection in mosquitoes are still unclear.


June 1, 2021  |  

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome using long-read sequencing

Sequence-based estimation of genetic diversity of Plasmodium falciparum, the most lethal malarial parasite, has proved challenging due to a lack of a complete genomic assembly. The skewed AT-richness (~80.6% (A+T)) of its genome and the lack of technology to assemble highly polymorphic sub-telomeric regions that contain clonally variant, multigene virulence families (i.e. var and rifin) have confounded attempts using short-read NGS technologies. Using single molecule, real-time (SMRT) sequencing, we successfully compiled all 14 nuclear chromosomes of the P. falciparum genome from telomere-to-telomere in single contigs. Specifically, amplification-free sequencing generated reads of average length 12 kb, with =50% of the reads between 15.5 and 50 kb in length. A hierarchical genome assembly process (HGAP), was used to assemble the P. falciparum genome de novo. This assembly accurately resolved centromeres (~90-99% (A+T)) and sub-telomeric regions, and identified large insertions and duplications in the genome that added extra genes to the var and rifin virulence families, along with smaller structural variants such as homopolymer tract expansions. These regions can be used as markers for genetic diversity during comparative genome analyses. Moreover, identifying the polymorphic and repetitive sub-telomeric sequences of parasite populations from endemic areas might inform the link between structural variation and phenotypes such as virulence, drug resistance and disease transmission.


June 1, 2021  |  

Phased human genome assemblies with Single Molecule, Real-Time Sequencing

In recent years, human genomic research has focused on comparing short-read data sets to a single human reference genome. However, it is becoming increasingly clear that significant structural variations present in individual human genomes are missed or ignored by this approach. Additionally, remapping short-read data limits the phasing of variation among individual chromosomes. This reduces the newly sequenced genome to a table of single nucleotide polymorphisms (SNPs) with little to no information as to the co-linearity (phasing) of these variants, resulting in a “mosaic” reference representing neither of the parental chromosomes. The variation between the homologous chromosomes is lost in this representation, including allelic variations, structural variations, or even genes present in only one chromosome, leading to lost information regarding allelic-specific gene expression and function. To address these limitations, we have made significant progress integrating haplotype information directly into genome assembly process with long reads. The FALCON-Unzip algorithm leverages a string graph assembly approach to facilitate identification and separation of heterozygosity during the assembly process to produce a highly contiguous assembly with phased haplotypes representing the genome in its diploid state. The outputs of the assembler are pairs of sequences (haplotigs) containing the allelic differences, including SNPs and structural variations, present in the two sets of chromosomes. The development and testing of our de-novo diploid assembler was facilitated and carefully validated using inbred reference model organisms and F1 progeny, which allowed us to ascertain the accuracy and concordance of haplotigs relative to the two inbred parental assemblies. Examination of the results confirmed that our haplotype-resolved assemblies are “Gold Level” reference genomes having a quality similar to that of Sanger-sequencing, BAC-based assembly approaches. We further sequenced and assembled two well-characterized human samples into their respective phased diploid genomes with gap-free contig N50 sizes greater than 23 Mb and haplotig N50 sizes greater than 380 kb. Results of these assemblies and a comparison between the haplotype sets are presented.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.