Menu
September 22, 2019

Construction of stable fluorescent laboratory control strains for several food safety relevant Enterobacteriaceae.

Using naturally-occurring bacterial strains as positive controls in testing protocols is typically feared due to the risk of cross-contaminating samples. We have developed a collection of strains which express Green Fluorescent Protein (GFP) at high-level, permitting rapid screening of the following species on selective or non-selective plates: Escherichia coli O157:H7, Shigella sonnei, S. flexneri, Salmonella enterica subsp. Enterica serovar Gaminera, S. Mbandaka, S. Tennesse, S. Minnesota, S. Senftenberg and S. Typhimurium. These new strains fluoresce when irradiated with UV light and maintain this phenotype in absence of antibiotic selection. Recombinants were phenotypically equivalent to the parent strain, except for S. Tennessee Sal66 that appeared Lac- on Xylose Lysine Deoxycholate (XLD) agar plates and Lac+ on Mac Conkey and Hektoen Enteric agar plates. Analysis of closed whole genome sequences revealed that Sal66 had lost one lactose operon; slower rates of lactose metabolism may affect lactose fermentation on XLD agar. These fluorescent enteric control strains were challenging to develop and should provide an easy and effective means of identifying cross-contamination. Published by Elsevier Ltd.


July 19, 2019

The origin of the Haitian cholera outbreak strain.

Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti.We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of V. cholerae to assess the likely origin of the cholera outbreak in Haiti.Both single-nucleotide variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant V. cholerae El Tor O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates.The Haitian epidemic is probably the result of the introduction, through human activity, of a V. cholerae strain from a distant geographic source. (Funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.).


July 19, 2019

Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain.

Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for ß-lactamases being of particular concern. Some ß-lactamases are active on a broad spectrum of ß-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-ß-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight ß-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses the two-step transposition mechanism of IS3. Robust genome-based phylogeny showed that a unified Klebsiella cluster contains Enterobacter aerogenes and Raoultella, suggesting the latter genus should be abandoned.


July 19, 2019

Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti.

Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics.Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.


July 19, 2019

Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage.

Lactobacillus hokkaidonensis is an obligate heterofermentative lactic acid bacterium, which is isolated from Timothy grass silage in Hokkaido, a subarctic region of Japan. This bacterium is expected to be useful as a silage starter culture in cold regions because of its remarkable psychrotolerance; it can grow at temperatures as low as 4°C. To elucidate its genetic background, particularly in relation to the source of psychrotolerance, we constructed the complete genome sequence of L. hokkaidonensis LOOC260(T) using PacBio single-molecule real-time sequencing technology.The genome of LOOC260(T) comprises one circular chromosome (2.28 Mbp) and two circular plasmids: pLOOC260-1 (81.6 kbp) and pLOOC260-2 (41.0 kbp). We identified diverse mobile genetic elements, such as prophages, integrated and conjugative elements, and conjugative plasmids, which may reflect adaptation to plant-associated niches. Comparative genome analysis also detected unique genomic features, such as genes involved in pentose assimilation and NADPH generation.This is the first complete genome in the L. vaccinostercus group, which is poorly characterized, so the genomic information obtained in this study provides insight into the genetics and evolution of this group. We also found several factors that may contribute to the ability of L. hokkaidonensis to grow at cold temperatures. The results of this study will facilitate further investigation for the cold-tolerance mechanism of L. hokkaidonensis.


July 19, 2019

Insertion sequence IS26 reorganizes plasmids in clinically isolated multidrug-resistant bacteria by replicative transposition.

Carbapenemase-producing Enterobacteriaceae (CPE), which are resistant to most or all known antibiotics, constitute a global threat to public health. Transposable elements are often associated with antibiotic resistance determinants, suggesting a role in the emergence of resistance. One insertion sequence, IS26, is frequently associated with resistance determinants, but its role remains unclear. We have analyzed the genomic contexts of 70 IS26 copies in several clinical and surveillance CPE isolates from the National Institutes of Health Clinical Center. We used target site duplications and their patterns as guides and found that a large fraction of plasmid reorganizations result from IS26 replicative transpositions, including replicon fusions, DNA inversions, and deletions. Replicative transposition could also be inferred for transposon Tn4401, which harbors the carbapenemase blaKPC gene. Thus, replicative transposition is important in the ongoing reorganization of plasmids carrying multidrug-resistant determinants, an observation that carries substantial clinical and epidemiological implications for understanding how such extreme drug resistance phenotypes evolve.Although IS26 is frequently reported to reside in resistance plasmids of clinical isolates, the characteristic hallmark of transposition, target site duplication (TSD), is generally not observed, raising questions about the mode of transposition for IS26. The previous observation of cointegrate formation during transposition implies that IS26 transposes via a replicative mechanism. The other possible outcome of replicative transposition is DNA inversion or deletion, when transposition occurs intramolecularly, and this would also generate a specific TSD pattern that might also serve as supporting evidence for the transposition mechanism. The numerous examples we present here demonstrate that replicative transposition, used by many mobile elements (including IS26 and Tn4401), is prevalent in the plasmids of clinical isolates and results in significant plasmid reorganization. This study also provides a method to trace the evolution of resistance plasmids based on TSD patterns. Copyright © 2015 He et al.


July 19, 2019

PacBio SMRT assembly of a complex multi-replicon genome reveals chlorocatechol degradative operon in a region of genome plasticity.

We have sequenced a Burkholderia genome that contains multiple replicons and large repetitive elements that would make it inherently difficult to assemble by short read sequencing technologies. We illustrate how the integrated long read correction algorithms implemented through the PacBio Single Molecule Real-Time (SMRT) sequencing technology successfully provided a de novo assembly that is a reasonable estimate of both the gene content and genome organization without making any further modifications. This assembly is comparable to related organisms assembled by more labour intensive methods. Our assembled genome revealed regions of genome plasticity for further investigation, one of which harbours a chlorocatechol degradative operon highly homologous to those previously identified on globally ubiquitous plasmids. In an ideal world, this assembly would still require experimental validation to confirm gene order and copy number of repeated elements. However, we submit that particularly in instances where a polished genome is not the primary goal of the sequencing project, PacBio SMRT sequencing provides a financially viable option for generating a biologically relevant genome estimate that can be utilized by other researchers for comparative studies. Copyright © 2016. Published by Elsevier B.V.


July 19, 2019

Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing.

Carbapenemase-producing Klebsiella pneumoniae pose an increasing risk for healthcare facilities worldwide. A continuous monitoring of ST distribution and its association with resistance and virulence genes is required for early detection of successful K. pneumoniae lineages. In this study, we used WGS to characterize MDR blaOXA-48-positive K. pneumoniae isolated from inpatients at the University Medical Center Göttingen, Germany, between March 2013 and August 2014.Closed genomes for 16 isolates of carbapenemase-producing K. pneumoniae were generated by single molecule real-time technology using the PacBio RSII platform.Eight of the 16 isolates showed identical XbaI macrorestriction patterns and shared the same MLST, ST147. The eight ST147 isolates differed by only 1-25 SNPs of their core genome, indicating a clonal origin. Most of the eight ST147 isolates carried four plasmids with sizes of 246.8, 96.1, 63.6 and 61.0?kb and a novel linear plasmid prophage, named pKO2, of 54.6?kb. The blaOXA-48 gene was located on a 63.6?kb IncL plasmid and is part of composite transposon Tn1999.2. The ST147 isolates expressed the yersinabactin system as a major virulence factor. The comparative whole-genome analysis revealed several rearrangements of mobile genetic elements and losses of chromosomal and plasmidic regions in the ST147 isolates.Single molecule real-time sequencing allowed monitoring of the genetic and epigenetic microevolution of MDR OXA-48-producing K. pneumoniae and revealed in addition to SNPs, complex rearrangements of genetic elements.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 19, 2019

De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii.

Propionibacterium freudenreichii is an industrially important bacterium granted the Generally Recognized as Safe (the GRAS) status, due to its long safe use in food bioprocesses. Despite the recognized role in the food industry and in the production of vitamin B12, as well as its documented health-promoting potential, P. freudenreichii remained poorly characterised at the genomic level. At present, only three complete genome sequences are available for the species.We used the PacBio RS II sequencing platform to generate complete genomes of 20 P. freudenreichii strains and compared them in detail. Comparative analyses revealed both sequence conservation and genome organisational diversity among the strains. Assembly from long reads resulted in the discovery of additional circular elements: two putative conjugative plasmids and three active, lysogenic bacteriophages. It also permitted characterisation of the CRISPR-Cas systems. The use of the PacBio sequencing platform allowed identification of DNA modifications, which in turn allowed characterisation of the restriction-modification systems together with their recognition motifs. The observed genomic differences suggested strain variation in surface piliation and specific mucus binding, which were validated by experimental studies. The phenotypic characterisation displayed large diversity between the strains in ability to utilise a range of carbohydrates, to grow at unfavourable conditions and to form a biofilm.The complete genome sequencing allowed detailed characterisation of the industrially important species, P. freudenreichii by facilitating the discovery of previously unknown features. The results presented here lay a solid foundation for future genetic and functional genomic investigations of this actinobacterial species.


July 19, 2019

Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains.

Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation.We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains.In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.


July 19, 2019

Comparison between complete genomes of an isolate of Pseudomonas syringae pv. actinidiae from Japan and a New Zealand isolate of the pandemic.

The modern pandemic of the bacterial kiwifruit pathogen Pseudomonas syringae pv actinidiae (Psa) is caused by a particular Psa lineage. To better understand the genetic basis of the virulence of this lineage, we compare the completely assembled genome of a pandemic New Zealand strain with that of the Psa type strain first isolated in Japan in 1983. Aligning the two genomes shows numerous translocations, constrained so as to retain the appropriate orientation of the Architecture Imparting Sequences (AIMs). There are several large horizontally acquired regions, some of which include Type I, Type II or Type III restriction systems. The activity of these systems is reflected in the methylation patterns of the two strains. The pandemic strain carries an Integrative Conjugative Element (ICE) located at a tRNA-Lys site. Two other complex elements are also present at tRNA-Lys sites in the genome. These elements are derived from ICE but have now acquired some alternative secretion function. There are numerous types of mobile element in the two genomes. Analysis of these elements reveals no evidence of recombination between the two Psa lineages.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.