Menu
April 21, 2020  |  

Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006-2016.

Colistin resistance mediated by mcr-1-harbouring plasmids is an emerging threat in Enterobacteriaceae, like Salmonella. Based on its major contribution to the diarrhoea burden, the epidemic state and threat of mcr-1-harbouring Salmonella in community-acquired infections should be estimated.This retrospective study analysed the mcr-1 gene incidence in Salmonella strains collected from a surveillance on diarrhoeal outpatients in Shanghai Municipality, China, 2006-2016. Molecular characteristics of the mcr-1-positive strains and their plasmids were determined by genome sequencing. The transfer abilities of these plasmids were measured with various conjugation strains, species, and serotypes.Among the 12,053 Salmonella isolates, 37 mcr-1-harbouring strains, in which 35 were serovar Typhimurium, were detected first in 2012 and with increasing frequency after 2015. Most patients infected with mcr-1-harbouring strains were aged <5?years. All strains, including fluoroquinolone-resistant and/or extended-spectrum ß-lactamase-producing strains, were multi-drug resistant. S. Typhimurium had higher mcr-1 plasmid acquisition ability compared with other common serovars. Phylogeny based on the genomes combined with complete plasmid sequences revealed some clusters, suggesting the presence of mcr-1-harbouring Salmonella outbreaks in the community. Most mcr-1-positive strains were clustered together with the pork strains, strongly suggesting pork consumption as a main infection source.The mcr-1-harbouring Salmonella prevalence in community-acquired diarrhoea displays a rapid increase trend, and the ESBL-mcr-1-harbouring Salmonella poses a threat for children. These findings highlight the necessary and significance of prohibiting colistin use in animals and continuous monitoring of mcr-1-harbouring Salmonella.Copyright © 2019. Published by Elsevier B.V.


April 21, 2020  |  

Antibiotic resistance and heavy metal tolerance plasmids: the antimicrobial bulletproof properties of Escherichia fergusonii isolated from poultry.

We describe the mobilome of Escherichia fergusonii 40A isolated from poultry, consisting of four different plasmids, p46_40A (IncX1, 45,869 bp), p80_40A (non-typable, 79,635 bp), p150_40A (IncI1-ST1, 148,340 bp) and p280_40A (IncHI2A-ST2, 279,537 bp). The mobilome-40A carries a blend of several different resistance and virulence genes, heavy metal tolerance operons and conjugation system. This mobilome 40A is a perfect tool to preserve and disseminate antimicrobial resistance and makes the bacterial isolate incredibly adapted to survive under constant antimicrobial pressure.


April 21, 2020  |  

Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race.

CRISPR-Cas systems function as adaptive immune systems by acquiring nucleotide sequences called spacers that mediate sequence-specific defence against competitors. Uniquely, the phage ICP1 encodes a Type I-F CRISPR-Cas system that is deployed to target and overcome PLE, a mobile genetic element with anti-phage activity in Vibrio cholerae. Here, we exploit the arms race between ICP1 and PLE to examine spacer acquisition and interference under laboratory conditions to reconcile findings from wild populations. Natural ICP1 isolates encode multiple spacers directed against PLE, but we find that single spacers do not interfere equally with PLE mobilization. High-throughput sequencing to assay spacer acquisition reveals that ICP1 can also acquire spacers that target the V. cholerae chromosome. We find that targeting the V. cholerae chromosome proximal to PLE is sufficient to block PLE and is dependent on Cas2-3 helicase activity. We propose a model in which indirect chromosomal spacers are able to circumvent PLE by Cas2-3-mediated processive degradation of the V. cholerae chromosome before PLE mobilization. Generally, laboratory-acquired spacers are much more diverse than the subset of spacers maintained by ICP1 in nature, showing how evolutionary pressures can constrain CRISPR-Cas targeting in ways that are often not appreciated through in vitro analyses. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.


April 21, 2020  |  

Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains.

Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.


April 21, 2020  |  

An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation.

Bloodstream infections by Salmonella enterica serovar Typhimurium constitute a major health burden in sub-Saharan Africa (SSA). These invasive non-typhoidal (iNTS) infections are dominated by isolates of the antibiotic resistance-associated sequence type (ST) 313. Here, we report emergence of ST313 sublineage II.1 in the Democratic Republic of the Congo. Sublineage II.1 exhibits extensive drug resistance, involving a combination of multidrug resistance, extended spectrum ß-lactamase production and azithromycin resistance. ST313 lineage II.1 isolates harbour an IncHI2 plasmid we name pSTm-ST313-II.1, with one isolate also exhibiting decreased ciprofloxacin susceptibility. Whole genome sequencing reveals that ST313 II.1 isolates have accumulated genetic signatures potentially associated with altered pathogenicity and host adaptation, related to changes observed in biofilm formation and metabolic capacity. Sublineage II.1 emerged at the beginning of the 21st century and is involved in on-going outbreaks. Our data provide evidence of further evolution within the ST313 clade associated with iNTS in SSA.


April 21, 2020  |  

CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS.

The robust detection of structural variants in mammalian genomes remains a challenge. It is particularly difficult in the case of genetically unstable Chinese hamster ovary (CHO) cell lines with only draft genome assemblies available. We explore the potential of the CRISPR/Cas9 system for the targeted capture of genomic loci containing integrated vectors in CHO-K1-based cell lines followed by next generation sequencing (NGS), and compare it to popular target-enrichment sequencing methods and to whole genome sequencing (WGS). Three different CRISPR/Cas9-based techniques were evaluated; all of them allow for amplification-free enrichment of target genomic regions in the range from 5 to 60 fold, and for recovery of ~15 kb-long sequences with no sequencing artifacts introduced. The utility of these protocols has been proven by the identification of transgene integration sites and flanking sequences in three CHO cell lines. The long enriched fragments helped to identify Escherichia coli genome sequences co-integrated with vectors, and were further characterized by Whole Genome Sequencing (WGS). Other advantages of CRISPR/Cas9-based methods are the ease of bioinformatics analysis, potential for multiplexing, and the production of long target templates for real-time sequencing.


April 21, 2020  |  

Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes.

Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.


April 21, 2020  |  

Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China

Present study characterized five Escherichia coli co-expressing ESBL and MCR-1 recovered from food, food-producing animals, and companion animals in China. Antimicrobial susceptibility tests, conjugation experiments, and plasmid typing were performed. Whole genome sequencing (WGS) was undertaken for all five isolates using either PacBio RS II or Illumina HiSeq 2500 platforms. The cefotaxime and colistin resistance encoded by blaCTX-M and mcr-1 genes, respectively, was transferable by conjugation either together or separately for all five strains. Interestingly, the ESBL and mcr-1 genes could be co-selected by cefotaxime, while the colistin only selected the mcr-1-carrying plasmids during the conjugation experiments. Five E. coli sequence types (ST88, ST93, ST602, ST162, and ST457) were detected. Although diverse plasmid profiles were identified, IncI2, IncFIB, and IncFII plasmid types were predominant. These five clonally unrelated isolates harbored the mcr-1 gene located on similar plasmid backbones, which showed high nucleotide similarity to plasmid pHNSHP45. The mcr-1 gene can be co-transmitted with blaCTX-Mgenes through IncI2 plasmids with or without ISApl1 in our study. Characterization of these co-existence ESBL and mcr-1 isolates extends our understanding on the dissemination of these resistance markers among bacteria of diverse origins.


April 21, 2020  |  

Mobilome of Brevibacterium aurantiacum Sheds Light on Its Genetic Diversity and Its Adaptation to Smear-Ripened Cheeses.

Brevibacterium aurantiacum is an actinobacterium that confers key organoleptic properties to washed-rind cheeses during the ripening process. Although this industrially relevant species has been gaining an increasing attention in the past years, its genome plasticity is still understudied due to the unavailability of complete genomic sequences. To add insights on the mobilome of this group, we sequenced the complete genomes of five dairy Brevibacterium strains and one non-dairy strain using PacBio RSII. We performed phylogenetic and pan-genome analyses, including comparisons with other publicly available Brevibacterium genomic sequences. Our phylogenetic analysis revealed that these five dairy strains, previously identified as Brevibacterium linens, belong instead to the B. aurantiacum species. A high number of transposases and integrases were observed in the Brevibacterium spp. strains. In addition, we identified 14 and 12 new insertion sequences (IS) in B. aurantiacum and B. linens genomes, respectively. Several stretches of homologous DNA sequences were also found between B. aurantiacum and other cheese rind actinobacteria, suggesting horizontal gene transfer (HGT). A HGT region from an iRon Uptake/Siderophore Transport Island (RUSTI) and an iron uptake composite transposon were found in five B. aurantiacum genomes. These findings suggest that low iron availability in milk is a driving force in the adaptation of this bacterial species to this niche. Moreover, the exchange of iron uptake systems suggests cooperative evolution between cheese rind actinobacteria. We also demonstrated that the integrative and conjugative element BreLI (Brevibacterium Lanthipeptide Island) can excise from B. aurantiacum SMQ-1417 chromosome. Our comparative genomic analysis suggests that mobile genetic elements played an important role into the adaptation of B. aurantiacum to cheese ecosystems.


April 21, 2020  |  

A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa.

Background: Lateral gene transfer plays a central role in the dissemination of carbapenem resistance in bacterial pathogens associated with nosocomial infections, mainly Enterobacteriaceae and Pseudomonas aeruginosa. Despite their clinical significance, there is little information regarding the mobile genetic elements and mechanism of acquisition and propagation of lateral genes in P. aeruginosa, and they remain largely unknown. Objectives: The present study characterized the genetic context of blaKPC-2 in carbapenem-resistant P. aeruginosa strain BH9. Methods:Pseudomonas aeruginosa BH9 sequencing was performed using the long-read PacBio SMRT platform and the Ion Proton System. De novo assembly was carried out using the SMRT pipeline and Canu, and gene prediction and annotation were performed using Prokka and RAST. Results:Pseudomonas aeruginosa BH9 exhibited a 7.1 Mb circular chromosome. However, the blaKPC-2 gene is located in an additional contig composed by a small plasmid pBH6 from P. aeruginosa strain BH6 and several phage-related genes. Further analysis revealed that the beginning and end of the contig contain identical sequences, supporting a circular plasmid structure. This structure spans 41,087 bp, exhibiting all the Mu-like phage landmarks. In addition, 5-bp direct repeats (GGATG) flanking the pBH6 ends were found, strongly indicating integration of the Mu-like phage into the pBH6 plasmid. Mu phages are commonly found in P. aeruginosa. However, for the first time showing a potential impact in shaping the vehicles of the dissemination of antimicrobial (e.g., plasmid pBH6) resistance genes in the Pseudomonas genus. Conclusion: pBH6 captured the Mu-like Phage BH9, creating a co-integrate pBH6::Phage BH9, and this phage-plasmid complex may represent novel case of a phage-like plasmid.


April 21, 2020  |  

Characterization of mcr-1-Harboring Plasmids from Pan Drug-Resistant Escherichia coli Strains Isolated from Retail Raw Chicken in South Korea

A number of studies from different countries have characterized mcr-1-harboring plasmids isolated from food; however, nothing has been reported about it in South Korea. In this study, we report the characterization of mcr-1 plasmids from pan drug-resistant (PDR) Escherichia coli strains isolated from retail food in the country. Colistin-resistant E. coli strains were isolated from retail raw chicken, and PCR was carried out to detect the mcr-1 gene. Whole genome sequencing of the mcr-1-positive strains was performed for further characterization. The results of whole genome sequencing revealed that all mcr-1 plasmids belonged to the IncI2 type. In addition to the mcr-1 plasmids, all of the isolates also carried additional plasmids possessing multiple antibiotic resistance genes, and the PDR was mediated by resistant plasmids except for fluoroquinolone resistance resulting from mutations in gyrA and parC. Interestingly, the mcr-1 plasmids were transferred by conjugation to other pathogenic strains including enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), Salmonella, and Klebsiella at the frequencies of 10−3−10−6, 10−2−10−5, 10−4−10−5, 10−4−10−6, and 10−5−10−6, respectively. The results showed that mcr-1 plasmids can be easily transmitted to pathogenic bacteria by conjugation.


April 21, 2020  |  

ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105.

Streptococcussuis serotype 5, an emerging zoonosis bacterial pathogen, has been isolated from infections in both pigs and humans. In this study, we sequenced the first complete genome of a virulent, multidrug-resistant SS5 strain HN105. The strain HN105 displayed enhanced pathogenicity in zebrafish and BABL/c mouse infection models. Comparative genome analysis identified a novel 80K integrative conjugative element (ICE), ICESsuHN105, as required for the multidrug resistance phenotype. Six corresponding antibiotic resistance genes in this ICE were identified, namely tet (O), tet (M), erm (two copies), aph, and spc. Phylogenetic analysis classified the element as a homolog of the ICESa2603 family, containing the typical family backbone and insertion DNA. DNA hybrids mediated by natural transformation between HN105 and ZY05719 verified the antibiotic resistant genes of ICESsuHN105 that could be transferred successfully, while they were dispersedly inserted with a single gene in different genomic locations of ZY05719(HN105) transformants. To further identify the horizontal transfer of ICESsuHN105 as a whole mobile genetic element, a circular intermediate form of ICESsuHN105 was detected by PCR. However, the effective conjugation using serotype 2 S. suis as recipients was not observed in current assays in vitro. Further studies confirmed the presence of the complete lantibiotic locus encoded in ICESsuHN105 that effectively inhibits the growth of other streptococci. In summary, this study demonstrated the presence of antibiotic resistance genes in ICE that are able to transfer between different clinical isolates and adapt to a broader range of Streptococcus serotype or species.


April 21, 2020  |  

New genetic context of lnu(B) composed of two multi-resistance gene clusters in clinical Streptococcus agalactiae ST-19 strains.

Clindamycin is a lincosamide antibiotic used to treat staphylococcal and streptococcal infections. Reports of clinical Streptococcus agalactiae isolates with the rare lincosamide resistance/macrolide susceptibility (LR/MS) phenotype are increasing worldwide. In this study, we characterised three clinical S. agalactiae strains with the unusual L phenotype from China.Three clinical S. agalactiae strains, Sag3, Sag27 and Sag4104, with the L phenotype were identified from 186 isolates collected from 2016 to 2018 in Shanghai, China. The MICs of clindamycin, erythromycin, tetracycline, levofloxacin, and penicillin were determined using Etest. PCR for the lnu(B) gene was conducted. Whole genome sequencing and sequence analysis were carried out to investigate the genetic context of lnu(B). Efforts to transfer lincomycin resistance by conjugation and to identify the circular form by inverse PCR were made.Sag3, Sag27, and Sag4104 were susceptible to erythromycin (MIC =0.25?mg/L) but resistant to clindamycin (MIC =1?mg/L). lnu(B) was found to be responsible for the L phenotype. lnu(B) in Sag3 and Sag27 were chromosomally located in an aadE-spw-lsa(E)-lnu(B) resistance gene cluster adjacent to an upstream 7-kb tet(L)-cat resistance gene cluster. Two resistance gene clusters were flanked by the IS6-like element, IS1216. Sag4104 only contained partial genes of aadE-spw-lsa(E)-lnu(B) resistance gene cluster and was also flanked by IS1216.These results established the presence of the L phenotype associated with lnu(B) in clinical S. agalactiae isolates in China. The lnu(B)-containing multi-resistance gene cluster possibly acts as a composite transposon flanked by IS1216 and as a vehicle for the dissemination of multidrug resistance among S. agalactiae.


April 21, 2020  |  

Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii.

Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream substrates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efficiency of gene transfer and genomic integration of entire biosynthetic pathways.We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cassettes (>?5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efficient generation of transconjugants using the Gram-positive origins of replication repL and repH. We also investigated the impact of DNA methylation on conjugation efficiency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfite conversion and PacBio sequencing to determine the DNA methylation profile of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confirmed by detecting enzyme proteotypic peptides and the formation of acetone and isopropanol by C. ljungdahlii cultures utilizing syngas as a carbon and energy source.The developed multi-gene delivery system offers a versatile tool to integrate and stably express large biosynthetic pathways in the industrial promising syngas-fermenting microorganism C. ljungdahlii. The simple transfer and stable integration of large gene clusters (like entire biosynthetic pathways) is expanding the range of possible fermentation products of heterologously expressing recombinant strains. We also believe that the developed gene delivery system can be adapted to other clostridial strains as well.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.