Menu
April 21, 2020  |  

Genomics and Experimental Analysis Reveal a Novel Factor Contributing to the Virulence of Cronobacter sakazakii Strains Associated With Neonate Infection.

Cronobacter sakazakii causes meningitis and necrotizing enterocolitis in premature infants. However, its virulence determinants, especially those specific for strains associated with neonate infections, remain largely unknown.In this study, we performed a comparative genomic analysis of 209 C. sakazakii genomes, and 8 clonal groups (CGs) were revealed.CG1 and CG2 were found to be significantly associated with neonate infections, and significantly prevalent genes in these 2 CGs were identified. Of these, a gene encoding the LysR-type regulator, CklR, was shown to contribute to bacterial pathogenicity based on animal experiments. We found that CklR directly binds and activates the suf Fe-S cluster biosynthesis operon, and high expression of the suf operon increases bacterial resistance to oxidative stress, which increases survival within the host. This leads to a high degree of bacteremia, which contributes to the development of meningitis.Our work revealed a novel virulence factor specific to predominant pathogenic C. sakazakii strains. © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.


April 21, 2020  |  

A prophage and two ICESa2603-family integrative and conjugative elements (ICEs) carrying optrA in Streptococcus suis.

To investigate the presence and transfer of the oxazolidinone/phenicol resistance gene optrA and identify the genetic elements involved in the horizontal transfer of the optrA gene in Streptococcus suis.A total of 237 S. suis isolates were screened for the presence of the optrA gene by PCR. Whole-genome DNA of three optrA-positive strains was completely sequenced using the Illumina MiSeq and Pacbio RSII platforms. MICs were determined by broth microdilution. Transferability of the optrA gene in S. suis was investigated by conjugation. The presence of circular intermediates was examined by inverse PCR.The optrA gene was present in 11.8% (28/237) of the S. suis strains. In three strains, the optrA gene was flanked by two copies of IS1216 elements in the same orientation, located either on a prophage or on ICESa2603-family integrative and conjugative elements (ICEs), including one tandem ICE. In one isolate, the optrA-carrying ICE transferred with a frequency of 2.1?×?10-8. After the transfer, the transconjugant displayed elevated MICs of the respective antimicrobial agents. Inverse PCRs revealed that circular intermediates of different sizes were formed in the three optrA-carrying strains, containing one copy of the IS1216E element and the optrA gene alone or in combination with other resistance genes.A prophage and two ICESa2603-family ICEs (including one tandem ICE) associated with the optrA gene were identified in S. suis. The association of the optrA gene with the IS1216E elements and its location on either a prophage or ICEs will aid its horizontal transfer. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates.

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a =95?%?phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.


April 21, 2020  |  

Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation.

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp. Copyright © 2017 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages.

The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage-HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen.Our data highlighted that the biomimetic HA nanocrystal-bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions.Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin.


April 21, 2020  |  

Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii).

Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as ‘Mini-Citrus’) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig-N50 2.2 Mb and Scaffold-N50 5.2 Mb) for F. hindsii. In total, 32 257 protein-coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR-modified F. hindsii were predominantly 1-bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation.

The genus Liriodendron belongs to the family Magnoliaceae, which resides within the magnoliids, an early diverging lineage of the Mesangiospermae. However, the phylogenetic relationship of magnoliids with eudicots and monocots has not been conclusively resolved and thus remains to be determined1-6. Liriodendron is a relict lineage from the Tertiary with two distinct species-one East Asian (L. chinense (Hemsley) Sargent) and one eastern North American (L. tulipifera Linn)-identified as a vicariad species pair. However, the genetic divergence and evolutionary trajectories of these species remain to be elucidated at the whole-genome level7. Here, we report the first de novo genome assembly of a plant in the Magnoliaceae, L. chinense. Phylogenetic analyses suggest that magnoliids are sister to the clade consisting of eudicots and monocots, with rapid diversification occurring in the common ancestor of these three lineages. Analyses of population genetic structure indicate that L. chinense has diverged into two lineages-the eastern and western groups-in China. While L. tulipifera in North America is genetically positioned between the two L. chinense groups, it is closer to the eastern group. This result is consistent with phenotypic observations that suggest that the eastern and western groups of China may have diverged long ago, possibly before the intercontinental differentiation between L. chinense and L. tulipifera. Genetic diversity analyses show that L. chinense has tenfold higher genetic diversity than L. tulipifera, suggesting that the complicated regions comprising east-west-orientated mountains and the Yangtze river basin (especially near 30°?N latitude) in East Asia offered more successful refugia than the south-north-orientated mountain valleys in eastern North America during the Quaternary glacial period.


April 21, 2020  |  

WGS of 1058 Enterococcus faecium from Copenhagen, Denmark, reveals rapid clonal expansion of vancomycin-resistant clone ST80 combined with widespread dissemination of a vanA-containing plasmid and acquisition of a heterogeneous accessory genome.

From 2012 to 2015, a sudden significant increase in vancomycin-resistant (vanA) Enterococcus faecium (VREfm) was observed in the Capital Region of Denmark. Clonal relatedness of VREfm and vancomycin-susceptible E. faecium (VSEfm) was investigated, transmission events between hospitals were identified and the pan-genome and plasmids from the largest VREfm clonal group were characterized.WGS of 1058 E. faecium isolates was carried out on the Illumina platform to perform SNP analysis and to identify the pan-genome. One isolate was also sequenced on the PacBio platform to close the genome. Epidemiological data were collected from laboratory information systems.Phylogeny of 892 VREfm and 166 VSEfm revealed a polyclonal structure, with a single clonal group (ST80) accounting for 40% of the VREfm isolates. VREfm and VSEfm co-occurred within many clonal groups; however, no VSEfm were related to the dominant VREfm group. A similar vanA plasmid was identified in =99% of isolates belonging to the dominant group and 69% of the remaining VREfm. Ten plasmids were identified in the completed genome, and ~29% of this genome consisted of dispensable accessory genes. The size of the pan-genome among isolates in the dominant group was 5905 genes.Most probably, VREfm emerged owing to importation of a successful VREfm clone which rapidly transmitted to the majority of hospitals in the region whilst simultaneously disseminating a vanA plasmid to pre-existing VSEfm. Acquisition of a heterogeneous accessory genome may account for the success of this clone by facilitating adaptation to new environmental challenges. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Genetic basis for the establishment of endosymbiosis in Paramecium.

The single-celled ciliate Paramecium bursaria is an indispensable model for investigating endosymbiosis between protists and green-algal symbionts. To elucidate the mechanism of this type of endosymbiosis, we combined PacBio and Illumina sequencing to assemble a high-quality and near-complete macronuclear genome of P. bursaria. The genomic characteristics and phylogenetic analyses indicate that P. bursaria is the basal clade of the Paramecium genus. Through comparative genomic analyses with its close relatives, we found that P. bursaria encodes more genes related to nitrogen metabolism and mineral absorption, but encodes fewer genes involved in oxygen binding and N-glycan biosynthesis. A comparison of the transcriptomic profiles between P. bursaria with and without endosymbiotic Chlorella showed differential expression of a wide range of metabolic genes. We selected 32 most differentially expressed genes to perform RNA interference experiment in P. bursaria, and found that P. bursaria can regulate the abundance of their symbionts through glutamine supply. This study provides novel insights into Paramecium evolution and will extend our knowledge of the molecular mechanism for the induction of endosymbiosis between P. bursaria and green algae.


April 21, 2020  |  

Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards.

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.


April 21, 2020  |  

Genomic Characterization of a Newly Isolated Rhizobacteria Sphingomonas panacis Reveals Plant Growth Promoting Effect to Rice

This article reports the full genome sequence of Sphingomonas panacis DCY99T (=KCTC 42347T =JCM30806T), which is a Gram-negative rod-shaped, non-spore forming, motile bacterium isolated from rusty ginseng root in South Korea. A draft genome of S. panacis DCY99T and a single circular plasmid were generated using the PacBio platform. Antagonistic activity experiment showed S. panacis DCY99T has the plant growth promoting effect. Thus, the genome sequence of S. panacis DCY99T may contribute to biotechnological application of the genus Sphingomonas in agriculture.


April 21, 2020  |  

The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology.

Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated at specific sites or motifs. The methylation types included 6mA, 4mC, and unknown types. Comparative genomic analysis demonstrated low levels of genetic similarity between E. harbinense and other well-known hydrogen-producing bacteria (i.e., Clostridium and Thermoanaerobacter) in phylogenesis. Hydrogen production of E. harbinense was catalyzed by genes that encode [FeFe]-hydrogenases and that were synthesized by three maturases of [FeFe]-H2ase. The metabolic mechanism of H2-ethanol co-production fermentation, catalyzed by pyruvate ferredoxin oxidoreductase was proposed. This study provides genetic and evolutionary information of a model genus for the further investigation of the metabolic pathway and regulatory network of ethanol-type fermentation and anaerobic bioprocesses for waste or wastewater treatment.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains.

Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.


April 21, 2020  |  

Meiotic sex in Chagas disease parasite Trypanosoma cruzi.

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.


April 21, 2020  |  

Genome analysis of the rice coral Montipora capitata.

Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.