Menu
April 21, 2020  |  

Genome analysis of the rice coral Montipora capitata.

Authors: Shumaker, Alexander and Putnam, Hollie M and Qiu, Huan and Price, Dana C and Zelzion, Ehud and Harel, Arye and Wagner, Nicole E and Gates, Ruth D and Yoon, Hwan Su and Bhattacharya, Debashish

Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai'i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.

Journal: Scientific reports
DOI: 10.1038/s41598-019-39274-3
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.