April 21, 2020  |  

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways. Genome analysis revealed that the genome of strain MEBiC 03485 was enriched with genes involved in signal transduction, mobile elements, and cold-adaptation, some of which might improve ecological fitness in the deep-sea environment. These findings improve our understanding of microbial adaptation strategies in deep-sea environments.


April 21, 2020  |  

Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential.

Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Assessment of the microbial diversity of Chinese Tianshan tibicos by single molecule, real-time sequencing technology.

Chinese Tianshan tibico grains were collected from the rural area of Tianshan in Xinjiang province, China. Typical tibico grains are known to consist of polysaccharide matrix that embeds a variety of bacteria and yeasts. These grains are widely used in some rural regions to produce a beneficial sugary beverage that is slightly acidic and contains low level of alcohol. This work aimed to characterize the microbiota composition of Chinese Tianshan tibicos using the single molecule, real-time sequencing technology, which is advantageous in generating long reads. Our results revealed that the microbiota mainly comprised of the bacterial species of Lactobacillus hilgardii, Lactococcus raffinolactis, Leuconostoc mesenteroides, Zymomonas mobilis, together with a Guehomyces pullulans-dominating fungal community. The data generated in this work helps identify beneficial microbes in Chinese Tianshan tibico grains.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.