Menu
June 1, 2021  |  

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long sequence reads. We have developed a PCR assay for SMRT Sequencing on the PacBio RS II platform in our lab for 3DL1 whole gene sequencing. This approach allows us to obtain allele level typing for 3DL1 genes and could serve as a model to type other KIR genes at allelic level.


June 1, 2021  |  

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional start sites, and poly- adenylation sites. This allows for the characterization of the full complement of isoforms within targeted genes, or across an entire transcriptome. Here we present improved genome annotations for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata), using the Iso-Seq method. We present graphical user interface and command line analysis workflows for the data sets. From brain total RNA, we characterize more than 15,000 isoforms in each species, 9% and 5% of which were previously unannotated in hummingbird and zebra finch, respectively. We highlight one example where capturing full-length transcripts identifies additional exons and UTRs.


June 1, 2021  |  

Targeted sequencing using a long-read sequencing technology

Targeted sequencing employing PCR amplification is a fundamental approach to studying human genetic disease. PacBio’s Sequel System and supporting products provide an end-to-end solution for amplicon sequencing, offering better performance to Sanger technology in accuracy, read length, throughput, and breadth of informative data. Sample multiplexing is supported with three barcoding options providing the flexibility to incorporate unique sample identifiers during target amplification or library preparation. Multiplexing is key to realizing the full capacity of the 1 million individual reactions per Sequel SMRT Cell. Two analysis workflows that can generate high-accuracy results support a wide range of amplicon sizes in two ranges from 250 bp to 3 kb and from 3 kb to >10 kb. The Circular Consensus Sequencing workflow results in high accuracy through intra-molecular consensus generation, while high accuracy for the Long Amplicon Analysis workflow is achieved by clustering of individual long reads from multiple reactions. Here we present workflows and results for single- molecule sequencing of amplicons for human genetic analysis.


June 1, 2021  |  

Scalability and reliability improvements to the Iso-Seq analysis pipeline enables higher throughput sequencing of full-length cancer transcripts

The characterization of gene expression profiles via transcriptome sequencing has proven to be an important tool for characterizing how genomic rearrangements in cancer affect the biological pathways involved in cancer progression and treatment response. More recently, better resolution of transcript isoforms has shown that this additional level of information may be useful in stratifying patients into cancer subtypes with different outcomes and responses to treatment.1 The Iso-Seq protocol developed at PacBio is uniquely able to deliver full-length, high-quality cDNA sequences, allowing the unambiguous determination of splice variants, identifying potential biomarkers and yielding new insights into gene fusion events. Recent improvements to the Iso-Seq bioinformatics pipeline increases the speed and scalability of data analysis while boosting the reliability of isoform detection and cross-platform usability. Here we report evaluation of Sequel Iso-Seq runs of human UHRR samples with spiked-in synthetic RNA controls and show that the new pipeline is more CPU efficient and recovers more human and synthetic isoforms while reducing the number of false positives. We also share the results of sequencing the well-characterized HCC-1954 breast cancer and normal breast cell lines, which will be made publicly available. Combined with the recent simplification of the Iso-Seq sample preparation2, the new analysis pipeline completes a streamlined workflow for revealing the most comprehensive picture of transcriptomes at the throughput needed to characterize cancer samples.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


June 1, 2021  |  

Library prep and bioinformatics improvements for full-length transcript sequencing on the PacBio Sequel System

The PacBio Iso-Seq method produces high-quality, full-length transcripts of up to 10 kb and longer and has been used to annotate many important plant and animal genomes. Here we describe an improved, simplified library workflow and analysis pipeline that reduces library preparation time, RNA input, and cost. The Iso-Seq V2 Express workflow is a one day protocol that requires only ~300 ng of total RNA input while also reducing the number of reverse transcription and amplification steps down to single reactions. Compared with the previous workflow, the Iso-Seq V2 Express workflow increases the percentage of full-length (FL) reads while achieving a higher average transcript length. At the same time, the Iso-Seq 3 analysis recently released in the SMRT Link 6.0 software is a major improvement over previous versions. Iso-Seq 3 is highly accurate at detecting and removing library artifacts (TSO and RT artifacts) as well as differentiating barcodes on multiplexed samples. Iso-Seq 3 achieves the same output performance in high-quality transcript sequences compared to previous versions while reducing the runtime and memory usage dramatically.


April 21, 2020  |  

Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes. © 2019 John Wiley & Sons Ltd/University College London.


April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.