Menu
July 7, 2019  |  

First report of cfr-encoding plasmids in the pandemic sequence type (ST) 22 methicillin-resistant Staphylococcus aureus Staphylococcal cassette chromosome mec type-IV clone.

Linezolid is often the drug of last resort for serious methicillin-resistant Staphylococcus aureus (MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins, cfr encoding phenicol, lincosamide, oxazolidinone, pleuromutilin and streptogramin A (PhLOPSA) resistance, its homolgue cfr(B) or optrA conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare in S. aureus, and cfr even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected to cfr PCR, PhLOPSA susceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling, spa typing, pulsed-field gel electrophoresis (PFGE), plasmid curing and conjugative transfer. Whole-genome sequencing was used for single nucleotide variant (SNV) analysis, multilocus-sequence typing, L-protein mutation identification, cfr-plasmid sequence analysis and optrA and cfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles compared to 1/5 in M13/0401. Both isolates were ST22-MRSA-IV/t032, harbored cfr, exhibited the PhLOPSA phenotype and lacked optrA and cfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harbored cfr and fexA on a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harbored cfr and lsa(B) on a novel 27-kb plasmid. This is the first report of cfr in the pandemic ST22-MRSA-IV clone. Different cfr plasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlights that prudent management of linezolid use is essential. Copyright © 2016 Shore et al.


July 7, 2019  |  

Detection of translocatable units in a blaCTX-M-15 extended-spectrum ß-lactamase-producing ST131 Escherichia coli isolate using a hybrid sequencing approach.

Sir,Escherichia coli sequence type 131 (ST131) producing CTX- M-type [3-lactamases are the most common extended-spectrum [3-lactamase (ESBL)-producing strains and are of high virulence potential. In particular, the blal-;X.M.[5 gene is often encoded on a conjugative plasmid and less frequently on the chromo- some. The presence of identical bluCTX.M.[5 alleles on both the chromosome and on a plasmid in the same strain has been reported [1], suggesting transfer ofthese genes between these two locations.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica serovar Typhimurium strain SO3 (sequence type 302) isolated from a baby with meningitis in Mexico.

The complete genome of Salmonella entericaserovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the Salmonella virulence plasmid (pSTV). Copyright © 2016 Vinuesa et al.


July 7, 2019  |  

First complete genome sequence of the Dutch veterinary Coxiella burnetii strain NL3262, originating from the largest global Q fever outbreak, and draft genome sequence of its epidemiologically linked chronic human isolate NLhu3345937

The largest global Q fever outbreak occurred in The Netherlands during 2007 to 2010. Goats and sheep were identified as the major sources of disease. Here, we report the first complete genome sequence of Coxiella burnetiigoat outbreak strain NL3262 and that of an epidemiologically linked chronic human strain, both having the outbreak-related CbNL01multilocus variable-number tandem-repeat analysis (MLVA) genotype. Copyright © 2016 Kuley et al.


July 7, 2019  |  

Mechanisms involved in acquisition of blaNDM genes by IncA/C2 and IncFIIY plasmids.

blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1 and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A and ISCR1 may have been involved in acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones but different regions carrying blaNDM are found in different locations. Tn3-derived Inverted-repeat Transposable Elements (TIME) appear to have been involved in acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterisation of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements and plasmids and provide insights into the possible routes for transmission of blaNDM genes amongst species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid.

Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%. Copyright © 2016 Gunther et al.


July 7, 2019  |  

Prediction of putative resistance islands in a carbapenem-resistant Acinetobacter baumannii global clone 2 clinical isolate.

We investigated the whole genome sequence (WGS) of a carbapenem-resistant Acinetobacter baumannii isolate belonging to the global clone 2 (GC2) and predicted resistance islands using a software tool.A. baumannii strain YU-R612 was isolated from the sputum of a 61-yr-old man with sepsis. The WGS of the YU-R612 strain was obtained by using the PacBio RS II Sequencing System (Pacific Biosciences Inc., USA). Antimicrobial resistance genes and resistance islands were analyzed by using ResFinder and Genomic Island Prediction software (GIPSy), respectively.The YU-R612 genome consisted of a circular chromosome (ca. 4,075 kb) and two plasmids (ca. 74 kb and 5 kb). Its sequence type (ST) under the Oxford scheme was ST191, consistent with assignment to GC2. ResFinder analysis showed that YU-R612 possessed the following resistance genes: four ß-lactamase genes bla(ADC-30), bla(OXA-66), bla(OXA-23), and bla(TEM-1); armA, aadA1, and aacA4 as aminoglycoside resistance-encoding genes; aac(6′)Ib-cr for fluoroquinolone resistance; msr(E) for macrolide, lincosamide, and streptogramin B resistance; catB8 for phenicol resistance; and sul1 for sulfonamide resistance. By GIPSy analysis, six putative resistant islands (PRIs) were determined on the YU-R612 chromosome. Among them, PRI1 possessed two copies of Tn2009 carrying bla(OXA-23), and PRI5 carried two copies of a class I integron carrying sul1 and armA genes.By prediction of resistance islands in the carbapenem-resistant A. baumannii YU-R612 GC2 strain isolated in Korea, PRIs were detected on the chromosome that possessed Tn2009 and class I integrons. The prediction of resistance islands using software tools was useful for analysis of the WGS.


July 7, 2019  |  

Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host.

Host adaptation is a key factor contributing to the emergence of new bacterial, viral and parasitic pathogens. Many pathogens are considered promiscuous because they cause disease across a range of host species, while others are host-adapted, infecting particular hosts(1). Host adaptation can potentially progress to host restriction where the pathogen is strictly limited to a single host species and is frequently associated with more severe symptoms. Host-adapted and host-restricted bacterial clades evolve from within a broader host-promiscuous species and sometimes target different niches within their specialist hosts, such as adapting from a mucosal to a systemic lifestyle. Genome degradation, marked by gene inactivation and deletion, is a key feature of host adaptation, although the triggers initiating genome degradation are not well understood. Here, we show that a chronic systemic non-typhoidal Salmonella infection in an immunocompromised human patient resulted in genome degradation targeting genes that are expendable for a systemic lifestyle. We present a genome-based investigation of a recurrent blood-borne Salmonella enterica serotype Enteritidis (S. Enteritidis) infection covering 15 years in an interleukin (IL)-12 ß-1 receptor-deficient individual that developed into an asymptomatic chronic infection. The infecting S. Enteritidis harbored a mutation in the mismatch repair gene mutS that accelerated the genomic mutation rate. Phylogenetic analysis and phenotyping of multiple patient isolates provides evidence for a remarkable level of within-host evolution that parallels genome changes present in successful host-restricted bacterial pathogens but never before observed on this timescale. Our analysis identifies common pathways of host adaptation and demonstrates the role that immunocompromised individuals can play in this process.


July 7, 2019  |  

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.


July 7, 2019  |  

Genome sequence of the multiantibiotic-resistant Enterococcus faecium strain C68 and insights on the pLRM23 colonization plasmid.

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain. Copyright © 2016 García-Solache and Rice.


July 7, 2019  |  

Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603.

Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603, formerly known as K. pneumoniae K6, is known for producing extended-spectrum ß-lactamase (ESBL) enzymes that can hydrolyze oxyimino-ß-lactams, resulting in resistance to these drugs. We herein report the complete genome of strain ATCC 700603 and show that the ESBL genes are plasmid-encoded. Copyright © 2016 Elliott et al.


July 7, 2019  |  

Whole genome DNA sequence analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP) analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs), suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks. Using WGS can delimit contamination sources for foodborne illnesses across multiple outbreaks and reveal otherwise undetected DNA sequence differences essential to the tracing of bacterial pathogens as they emerge.


July 7, 2019  |  

Atypical Salmonella enterica serovars in murine and human infection models: Is it time to reassess our approach to the study of salmonellosis?

Nontyphoidal Salmonella species are globally disseminated pathogens and the predominant cause of gastroenteritis. The pathogenesis of salmonellosis has been extensively studied using in vivo murine models and cell lines typically challenged with Salmonella Typhimurium. Although serovars Enteritidis and Typhimurium are responsible for the most of human infections reported to the CDC, several other serovars also contribute to clinical cases of salmonellosis. Despite their epidemiological importance, little is known about their infection phenotypes. Here, we report the virulence characteristics and genomes of 10 atypical S. enterica serovars linked to multistate foodborne outbreaks in the United States. We show that the murine RAW 264.7 macrophage model of infection is unsuitable for inferring human relevant differences in nontyphoidal Salmonella infections whereas differentiated human THP-1 macrophages allowed these isolates to be further characterised in a more relevant, human context.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.