Menu
September 21, 2019  |  

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.

Long-read, single-molecule real-time (SMRT) sequencing is routinely used to finish microbial genomes, but available assembly methods have not scaled well to larger genomes. We introduce the MinHash Alignment Process (MHAP) for overlapping noisy, long reads using probabilistic, locality-sensitive hashing. Integrating MHAP with the Celera Assembler enabled reference-grade de novo assemblies of Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and a human hydatidiform mole cell line (CHM1) from SMRT sequencing. The resulting assemblies are highly continuous, include fully resolved chromosome arms and close persistent gaps in these reference genomes. Our assembly of D. melanogaster revealed previously unknown heterochromatic and telomeric transition sequences, and we assembled low-complexity sequences from CHM1 that fill gaps in the human GRCh38 reference. Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes.


September 21, 2019  |  

Phased diploid genome assembly with single-molecule real-time sequencing.

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


July 19, 2019  |  

Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.


July 19, 2019  |  

An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome.

Second generation sequencing has permitted detailed sequence characterisation at the whole genome level of a growing number of non-model organisms, but the data produced have short read-lengths and biased genome coverage leading to fragmented genome assemblies. The PacBio RS long-read sequencing platform offers the promise of increased read length and unbiased genome coverage and thus the potential to produce genome sequence data of a finished quality containing fewer gaps and longer contigs. However, these advantages come at a much greater cost per nucleotide and with a perceived increase in error-rate. In this investigation, we evaluated the performance of the PacBio RS sequencing platform through the sequencing and de novo assembly of the Potentilla micrantha chloroplast genome.Following error-correction, a total of 28,638 PacBio RS reads were recovered with a mean read length of 1,902 bp totalling 54,492,250 nucleotides and representing an average depth of coverage of 320× the chloroplast genome. The dataset covered the entire 154,959 bp of the chloroplast genome in a single contig (100% coverage) compared to seven contigs (90.59% coverage) recovered from an Illumina data, and revealed no bias in coverage of GC rich regions. Post-assembly the data were largely concordant with the Illumina data generated and allowed 187 ambiguities in the Illumina data to be resolved. The additional read length also permitted small differences in the two inverted repeat regions to be assigned unambiguously.This is the first report to our knowledge of a chloroplast genome assembled de novo using PacBio sequence data. The PacBio RS data generated here were assembled into a single large contig spanning the P. micrantha chloroplast genome, with a higher degree of accuracy than an Illumina dataset generated at a much greater depth of coverage, due to longer read lengths and lower GC bias in the data. The results we present suggest PacBio data will be of immense utility for the development of genome sequence assemblies containing fewer unresolved gaps and ambiguities and a significantly smaller number of contigs than could be produced using short-read sequence data alone.


July 19, 2019  |  

Genome reference and sequence variation in the large repetitive central exon of human MUC5AC.

Despite modern sequencing efforts, the difficulty in assembly of highly repetitive sequences has prevented resolution of human genome gaps, including some in the coding regions of genes with important biological functions. One such gene, MUC5AC, encodes a large, secreted mucin, which is one of the two major secreted mucins in human airways. The MUC5AC region contains a gap in the human genome reference (hg19) across the large, highly repetitive, and complex central exon. This exon is predicted to contain imperfect tandem repeat sequences and multiple conserved cysteine-rich (CysD) domains. To resolve the MUC5AC genomic gap, we used high-fidelity long PCR followed by single molecule real-time (SMRT) sequencing. This technology yielded long sequence reads and robust coverage that allowed for de novo sequence assembly spanning the entire repetitive region. Furthermore, we used SMRT sequencing of PCR amplicons covering the central exon to identify genetic variation in four individuals. The results demonstrated the presence of segmental duplications of CysD domains, insertions/deletions (indels) of tandem repeats, and single nucleotide variants. Additional studies demonstrated that one of the identified tandem repeat insertions is tagged by nonexonic single nucleotide polymorphisms. Taken together, these data illustrate the successful utility of SMRT sequencing long reads for de novo assembly of large repetitive sequences to fill the gaps in the human genome. Characterization of the MUC5AC gene and the sequence variation in the central exon will facilitate genetic and functional studies for this critical airway mucin.


July 19, 2019  |  

Aluminum tolerance in maize is associated with higher MATE1 gene copy number.

Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments.


July 19, 2019  |  

PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations.

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki-Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.


July 19, 2019  |  

Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae.

Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures. Copyright © 2015 by the Genetics Society of America.


July 19, 2019  |  

Birth of a new gene on the Y chromosome of Drosophila melanogaster.

Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ~20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ~2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.


July 19, 2019  |  

Mind the gap; seven reasons to close fragmented genome assemblies.

Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions. Copyright © 2015 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Genetic variation and the de novo assembly of human genomes.

The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.


July 19, 2019  |  

Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16?kilobases) reads with random errors, we assembled 99% (244?megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4?megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.


July 19, 2019  |  

Fc? receptors: genetic variation, function, and disease.

Fc? receptors (Fc?Rs) are key immune receptors responsible for the effective control of both humoral and innate immunity and are central to maintaining the balance between generating appropriate responses to infection and preventing autoimmunity. When this balance is lost, pathology results in increased susceptibility to cancer, autoimmunity, and infection. In contrast, optimal Fc?R engagement facilitates effective disease resolution and response to monoclonal antibody immunotherapy. The underlying genetics of the Fc?R gene family are a central component of this careful balance. Complex in humans and generated through ancestral duplication events, here we review the evolution of the gene family in mammals, the potential importance of copy number, and functionally relevant single nucleotide polymorphisms, as well as discussing current approaches and limitations when exploring genetic variation in this region. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


July 19, 2019  |  

A supergene determines highly divergent male reproductive morphs in the ruff.

Three strikingly different alternative male mating morphs (aggressive ‘independents’, semicooperative ‘satellites’ and female-mimic ‘faeders’) coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird. Major differences in body size, ornamentation, and aggressive and mating behaviors are inherited as an autosomal polymorphism. We show that development into satellites and faeders is determined by a supergene consisting of divergent alternative, dominant and non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential CENP-N gene (encoding centromere protein N), and pedigree analysis confirms the lethality of homozygosity for the inversion. We describe new differences in behavior, testis size and steroid metabolism among morphs and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits.


July 19, 2019  |  

Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.