Menu
September 22, 2019  |  

Repeated evolution of self-compatibility for reproductive assurance.

Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes, evolutionary mechanisms such as hermaphroditism and self-fertilization have repeatedly evolved. Here, by combining the insights from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes readily evolved under selection in the experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction, governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions facilitating the evolution of self-compatibility.


September 22, 2019  |  

A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.

Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models.A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models.Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


September 22, 2019  |  

Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity.

Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen.Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb and contained a total of 13,797 annotated genes, supported by transcriptomic and proteogenomics data sets.Whole genome comparative analysis revealed major chromosomal segmental rearrangements and fusions, highlighting intraspecific genome plasticity in this species. Furthermore, the Ptr race classification was not supported at the whole genome level, as phylogenetic analysis did not cluster the ToxA producing isolates. This expansion of available Ptr genomics resources will directly facilitate research aimed at controlling tan spot disease.


September 22, 2019  |  

Genome evolution across 1,011 Saccharomyces cerevisiae isolates.

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single ‘out-of-China’ origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.


September 22, 2019  |  

The N6-adenine methylation in yeast genome profiled by single-molecule technology.

The most common and abundant DNA modification is 5-meth- ylcytosine (5mC), which has been well-established as an epigenetic mark regulating gene expression in eukaryotes (Jones, 2012). Another DNA modification N6-methyldeoxyadenosine (6mA), pre- viously reported as a widespread DNA methylation in prokaryotes, plays an important role in gene expression, DNA replication, DNA repair, cell cycle progression and host-pathogen interaction (Messer and Noyer-Weidner, 1988; Lu et al., 1994; Collier et al., 2007). The knowledge of 6mA in eukaryotes has been very limited until the recent development of high-throughput sequencing and high-sensitive mass spectrometry technologies, which have greatly contributed to the investigation of 6mA in fungi, animals and plants (Fu et al., 2015; Greer et al., 2015; Zhang et al., 2015; Koziol et al., 2016; Liu et al., 2016; Wu et al., 2016; Liang et al., 2017; Mondo et al., 2017). Recent studies revealed that 6mA abundance is vari- able, and it is relative higher in Chlamydomonas and early- diverging fungi species than other eukaryotes. The distribution pat- terns of 6mA and their functions are not quite conserved among or- ganisms. 6mA was found enriched near the transcription start sites (TSS) in Chlamydomonas (Fu et al., 2015) and at the repeats in Drosophila, Mus musculus and Danio rerio (Zhang et al., 2015; Liu et al., 2016; Wu et al., 2016), and commonly depleted from gene exons in Xenopus laevis and M. musculus (Koziol et al., 2016). In several species, 6mA was associated with transcriptionally active genes (Fu et al., 2015; Mondo et al., 2017), and it was also found correlated with gene silencing in mammalian embryonic stem cells (Wu et al., 2016).


September 22, 2019  |  

Gene presence-absence polymorphism in castrating anther-smut fungi: Recent gene Gains and Phylogeographic Structure.

Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.


September 22, 2019  |  

Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome.

When unifying genomic resources among studies and comparing data between species, there is often no better resource than a genome sequence. Having a reference genome for the Chinook salmon (Oncorhynchus tshawytscha) will enable the extensive genomic resources available for Pacific salmon, Atlantic salmon, and rainbow trout to be leveraged when asking questions related to the Chinook salmon. The Chinook salmon’s wide distribution, long cultural impact, evolutionary history, substantial hatchery production, and recent wild-population decline make it an important research species. In this study, we sequenced and assembled the genome of a Chilliwack River Hatchery female Chinook salmon (gynogenetic and homozygous at all loci). With a reference genome sequence, new questions can be asked about the nature of this species, and its role in a rapidly changing world.


September 22, 2019  |  

Double insertion of transposable elements provides a substrate for the evolution of satellite DNA.

Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due to the challenge of mapping individual repeats to unique genomic locations. Here we develop a new pipeline called ConTExt that demonstrates that paired-end Illumina data can be successfully leveraged to identify a wide range of structural variation within repetitive sequence, including tandem elements. By analyzing 85 genomes from five populations of Drosophila melanogaster, we discover that TEs commonly form tandem dimers. Our results further suggest that insertion site preference is the major mechanism by which dimers arise and that, consequently, dimers form rapidly during periods of active transposition. This abundance of TE dimers has the potential to provide source material for future expansion into satellite arrays, and we discover one such copy number expansion of the DNA transposon hobo to approximately 16 tandem copies in a single line. The very process that defines TEs-transposition-thus regularly generates sequences from which new satellites can arise.© 2018 McGurk and Barbash; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks.

DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.


September 22, 2019  |  

Multiple convergent supergene evolution events in mating-type chromosomes.

Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.


September 22, 2019  |  

In vitro DNA SCRaMbLE.

The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The “in vitro SCRaMbLE system” uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a ß-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.


September 22, 2019  |  

Amplification and adaptation of centromeric repeats in polyploid switchgrass species.

Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019  |  

Long-read sequencing data analysis for yeasts.

Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ~41 h to generate a complete and well-annotated genome from ~100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.


September 22, 2019  |  

Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads

Due to the large number of repetitive sequences in complex eukaryotic genomes, fragmented and incompletely assembled genomes lose value as reference sequences, often due to short contigs that cannot be anchored or mispositioned onto chromosomes. Here we report a novel method Highly Efficient Repeat Assembly (HERA), which includes a new concept called a connection graph as well as algorithms for constructing the graph. HERA resolves repeats at high efficiency with single-molecule sequencing data, and enables the assembly of chromosome-scale contigs by further integrating genome maps and Hi-C data. We tested HERA with the genomes of rice R498, maize B73, human HX1 and Tartary buckwheat Pinku1. HERA can correctly assemble most of the tandemly repetitive sequences in rice using single-molecule sequencing data only. Using the same maize and human sequencing data published by Jiao et al. (2017) and Shi et al. (2016), respectively, we dramatically improved on the sequence contiguity compared with the published assemblies, increasing the contig N50 from 1.3 Mb to 61.2 Mb in maize B73 assembly and from 8.3 Mb to 54.4 Mb in human HX1 assembly with HERA. We provided a high-quality maize reference genome with 96.9% of the gaps filled (only 76 gaps left) and several incorrectly positioned sequences fixed compared with the B73 RefGen_v4 assembly. Comparisons between the HERA assembly of HX1 and the human GRCh38 reference genome showed that many gaps in GRCh38 could be filled, and that GRCh38 contained some potential errors that could be fixed. We assembled the Pinku1 genome into 12 scaffolds with a contig N50 size of 27.85 Mb. HERA serves as a new genome assembly/phasing method to generate high quality sequences for complex genomes and as a curation tool to improve the contiguity and completeness of existing reference genomes, including the correction of assembly errors in repetitive regions.


September 22, 2019  |  

De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution

The wild relatives of rice have adapted to different ecological environments and constitute a useful reservoir of agronomic traits for genetic improvement. Here we present the ~777?Mb de novo assembled genome sequence of Oryza granulata. Recent bursts of long-terminal repeat retrotransposons, especially RIRE2, led to a rapid twofold increase in genome size after O. granulata speciation. Universal centromeric tandem repeats are absent within its centromeres, while gypsy-type LTRs constitute the main centromere-specific repetitive elements. A total of 40,116 protein-coding genes were predicted in O. granulata, which is close to that of Oryza sativa. Both the copy number and function of genes involved in photosynthesis and energy production have undergone positive selection during the evolution of O. granulata, which might have facilitated its adaptation to the low light habitats. Together, our findings reveal the rapid genome expansion, distinctive centromere organization, and adaptive evolution of O. granulata.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.