April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

Complete mitochondrial genome of Hemiptelea davidii (Ulmaceae) and phylogenetic analysis

Hemiptelea davidii (Hance) Planch is a potential valuable forest tree in arid sandy environments. Here, the complete mitochondrial genome of H. davidii was assembled using a combination of the PacBio Sequel data and the Illumina Hiseq data. The mitochondrial genome is 460,941bp in length, including 37 protein-coding genes, 19 tRNA genes, and three rRNA genes. The GC content of the whole mito- chondrial genome is 44.84%. Phylogenetic analyses indicated that H. davidii is close with Cannabis and Morus species.


April 21, 2020  |  

A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci.

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety “Finola.” The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ~40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant. © 2019 Laverty et al.; Published by Cold Spring Harbor Laboratory Press.


April 21, 2020  |  

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.


July 19, 2019  |  

Progress, challenges and the future of crop genomes.

The availability of plant reference genomes has ushered in a new era of crop genomics. More than 100 plant genomes have been sequenced since 2000, 63% of which are crop species. These genome sequences provide insight into architecture, evolution and novel aspects of crop genomes such as the retention of key agronomic traits after whole genome duplication events. Some crops have very large, polyploid, repeat-rich genomes, which require innovative strategies for sequencing, assembly and analysis. Even low quality reference genomes have the potential to improve crop germplasm through genome-wide molecular markers, which decrease expensive phenotyping and breeding cycles. The next stage of plant genomics will require draft genome refinement, building resources for crop wild relatives, resequencing broad diversity panels, and plant ENCODE projects to better understand the complexities of these highly diverse genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The draft genome of Primula veris yields insights into the molecular basis of heterostyly.

The flowering plant Primula veris is a common spring blooming perennial that is widely cultivated throughout Europe. This species is an established model system in the study of the genetics, evolution, and ecology of heterostylous floral polymorphisms. Despite the long history of research focused on this and related species, the continued development of this system has been restricted due the absence of genomic and transcriptomic resources.We present here a de novo draft genome assembly of P. veris covering 301.8 Mb, or approximately 63% of the estimated 479.22 Mb genome, with an N50 contig size of 9.5 Kb, an N50 scaffold size of 164 Kb, and containing an estimated 19,507 genes. The results of a RADseq bulk segregant analysis allow for the confident identification of four genome scaffolds that are linked to the P. veris S-locus. RNAseq data from both P. veris and the closely related species P. vulgaris allow for the characterization of 113 candidate heterostyly genes that show significant floral morph-specific differential expression. One candidate gene of particular interest is a duplicated GLOBOSA homolog that may be unique to Primula (PveGLO2), and is completely silenced in L-morph flowers.The P. veris genome represents the first genome assembled from a heterostylous species, and thus provides an immensely important resource for future studies focused on the evolution and genetic dissection of heterostyly. As the first genome assembled from the Primulaceae, the P. veris genome will also facilitate the expanded application of phylogenomic methods in this diverse family and the eudicots as a whole.


July 7, 2019  |  

The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb.

Dendrobium officinale Kimura et Migo is a traditional Chinese orchid herb that has both ornamental value and a broad range of therapeutic effects. Here, we report the first de novo assembled 1.35 Gb genome sequences for D. officinale by combining the second-generation Illumina Hiseq 2000 and third-generation PacBio sequencing technologies. We found that orchids have a complete inflorescence gene set and have some specific inflorescence genes. We observed gene expansion in gene families related to fungus symbiosis and drought resistance. We analyzed biosynthesis pathways of medicinal components of D. officinale and found extensive duplication of SPS and SuSy genes, which are related to polysaccharide generation, and that the pathway of D. officinale alkaloid synthesis could be extended to generate 16-epivellosimine. The D. officinale genome assembly demonstrates a new approach to deciphering large complex genomes and, as an important orchid species and a traditional Chinese medicine, the D. officinale genome will facilitate future research on the evolution of orchid plants, as well as the study of medicinal components and potential genetic breeding of the dendrobe. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Single molecule sequencing of THCA synthase reveals copy number variation in modern drug-type Cannabis sativa L.

Cannabinoid expression is an important genetically determined feature of cannabis that presents clinical and legal implications for patients seeking cannabinoid specific therapies like Cannabidiol (CBD). Cannabinoid, terpenoid, and flavonoid marker assisted selection can accelerate breeding efforts by offering genetic tools to select for desired traits at an early stage in growth. To this end, multiple models for chemotype inheritance have been described suggesting a complex picture for chemical phenotype determination. Here we explore the potential role of copy number variation of THCA Synthase using phased single molecule sequencing and demonstrate that copy number and sequence variation of this gene is common and suggests a more nuanced view of chemotype prediction.


July 7, 2019  |  

The first 50 plant genomes

Fifty-five plant genomes have been published to date representing 49 different species (Table 1 includes PubMed IDs for complete reference). What have we learned from the first wave of plant genomes? It has been said that plant genome papers (and genome papers in general) are dry and lack “biology” and that the days of high impact plant genome papers are drawing to a close unless they explore significant biology. However, with each new genome, earlier observations are refined and plant genome papers continue to reveal novel aspects of genome biology. For example, the tomato and banana genome papers refined current thinking on the whole genome duplications (WGD) that shaped dicot and monocot genome evolution (D’Hont et al., 2012; Tomato Genome Consortium, 2012). These observations were enabled not only by high quality genome assemblies but also by a greater number of genomes available for com- parisons. In addition, the initial round of plant genomes enabled the first generation of functional genomics that helped to define the roles of hundreds of genes, provided unprecedented access to sequence-based markers for breeding, and provided glimpses into plant evolutionary history. More genomes, representing the diverse array of species in Viridiplantae are still required to gain a full understanding of plant genome structure, evolution, and complexity.


July 7, 2019  |  

Terpene synthases from Cannabis sativa.

Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as ß-myrcene, (E)-ß-ocimene, (-)-limonene, (+)-a-pinene, ß-caryophyllene, and a-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.


July 7, 2019  |  

Genetic and genomic tools for Cannabis sativa

The Cannabis industry is currently one of the fastest growing industries in the United States. Given the changing legal status of the plant, and the rapidly advancing research, updated information on the advancement of Cannabis genomics is needed. This versatile plant is used as medicine and for food, fiber, and bioremediation. Insights from modern, high-throughput genomic technology are revolutionizing our understanding of the plant and are providing new tools to further improve our knowledge and utilization of this unique species. This review quantifies and evaluates the currently available genomic resources for Cannabis research, including six whole-genome assemblies, two transcriptomes, and 393 other substantial genomic resources, as well as other smaller publicly available genetic and genomic resources. The open-source approaches followed by many leading scientists in the field promote collaboration and facilitate these rapid advances.


July 7, 2019  |  

Towards systems metabolic engineering in Pichia pastoris.

The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published by Elsevier Inc.


July 7, 2019  |  

Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry.

Eight isolates of Gram-negative fluorescent bacteria (58(T), 122, 374, 791, 963, 966, 970a and 1021) were obtained from diseased tissue of cherry trees from different regions of Poland. The symptoms resembled those of bacterial canker. Based on an analysis of 16S rDNA sequences the isolates shared the highest over 99.9% similarity with Pseudomonas ficuserectae JCM 2400(T) and P. congelans DSM 14939(T). Phylogenetic analysis using housekeeping genes gyrB, rpoD and rpoB revealed that they form a separate cluster and confirmed their closest relation to P. syringae NCPPB 281(T) and P. congelans LMG 21466(T). DNA-DNA hybridization between the cherry isolate 58(T) and the type strains of these two closely related species revealed relatedness values of 58.2% and 41.9%, respectively. This was further supported by Average Nucleotide Identity (ANIb) and Genome-to-Genome Distance (GGDC) between the whole genome sequences of strain LMG 28609(T) and closely related Pseudomonas species. The major cellular fatty acids are 16:0 and summed feature 3 (16:1 ?7c/15:0 iso 2OH). Phenotypic characteristics differentiated the novel isolates from other closely related species. The G+C content of the genomic DNA of strain 58(T) was 59%. The diversity was proved by PCR MP and BOX PCR, eliminating the possibility that they constitute a clonal population. Based on the evidence of this polyphasic taxonomic study the eight strains are considered to represent a novel species of the genus Pseudomonas for which the name P. cerasi sp. nov. (non Griffin, 1911) is proposed. The type strain of this species is 58(T) (=LMG 28609(T)=CFBP 8305(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Chloroplast genomes: diversity, evolution, and applications in genetic engineering.

Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.


July 7, 2019  |  

Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316.

We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.