June 1, 2021  |  

Resolving the ‘dark matter’ in genomes.

Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.


June 1, 2021  |  

Single Molecule, Real-Time sequencing of full-length cDNA transcripts uncovers novel alternatively spliced isoforms.

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties such as structure, function, or subcellular localization. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be underscored. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing (avg. read length: 10-15 kb) without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. The standard Iso-Seq protocol workflow available for all researchers is presented using a deep dataset of full- length cDNA sequences from the MCF-7 cancer cell line, and multiple tissues (brain, heart, and liver). Detected novel transcripts approaching 10 kb and alternative splicing events are highlighted. Even in extensively profiled samples, the method uncovered large numbers of novel alternatively spliced isoforms and previously unannotated genes.


June 1, 2021  |  

Full-length cDNA sequencing of alternatively spliced isoforms provides insight into human diseases.

The majority of human genes are alternatively spliced, making it possible for most genes to generate multiple proteins. The process of alternative splicing is highly regulated in a developmental-stage and tissue-specific manner. Perturbations in the regulation of these events can lead to disease in humans. Alternative splicing has been shown to play a role in human cancer, muscular dystrophy, Alzheimer’s, and many other diseases. Understanding these diseases requires knowing the full complement of mRNA isoforms. Microarrays and high-throughput cDNA sequencing have become highly successful tools for studying transcriptomes, however these technologies only provide small fragments of transcripts and building complete transcript isoforms has been very challenging. We have developed the Iso-Seq technique, which is capable of sequencing full-length, single-molecule cDNA sequences. The method employs SMRT Sequencing to generate individual molecules with average read lengths of more than 10 kb and some as long as 40 kb. As most transcripts are from 1 to 10 kb, we can sequence through entire RNA molecules, requiring no fragmentation or post-sequencing assembly. Jointly with the sequencing method, we developed a computational pipeline that polishes these full-length transcript sequences into high-quality, non-redundant transcript consensus sequences. Iso-Seq sequencing enables unambiguous identification of alternative splicing events, alternative transcriptional start and poly-A sites, and transcripts from gene fusion events. Knowledge of the complete set of isoforms from a sample of interest is key for accurate quantification of isoform abundance when using any technology for transcriptome studies. Here we characterize the full-length transcriptome of normal human tissues, paired tumor/normal samples from breast cancer, and a brain sample from a patient with Alzheimer’s using deep Iso-Seq sequencing. We highlight numerous discoveries of novel alternatively spliced isoforms, gene-fusions events, and previously unannotated genes that will improve our understanding of human diseases.


June 1, 2021  |  

Full-length cDNA sequencing of alternatively spliced isoforms provides insight into human cancer

The majority of human genes are alternatively spliced, making it possible for most genes to generate multiple proteins. The process of alternative splicing is highly regulated in a developmental-stage and tissue-specific manner. Perturbations in the regulation of these events can lead to disease in humans (1). Alternative splicing has been shown to play a role in human cancer, muscular dystrophy, Alzheimer’s, and many other diseases. Understanding these diseases requires knowing the full complement of mRNA isoforms. Microarrays and high-throughput cDNA sequencing have become highly successful tools for studying transcriptomes, however these technologies only provide small fragments of transcripts and building complete transcript isoforms has been very challenging (2). We have developed a technique, called Iso-Seq sequencing, that is capable of sequencing full-length, single-molecule cDNA sequences. The method employs SMRT Sequencing from PacBio, which can sequence individual molecules with read lengths that average more than 10 kb and can reach as long as 40 kb. As most transcripts are from 1 – 10 kb, we can sequence through entire RNA molecules, requiring no fragmentation or post-sequencing assembly. Jointly with the sequencing method, we developed a computational pipeline that polishes these full-length transcript sequences into high-quality, non-redundant transcript consensus sequences. Iso-Seq sequencing enables unambiguous identification of alternative splicing events, alternative transcriptional start and polyA sites, and transcripts from gene fusion events. Knowledge of the complete set of isoforms from a sample of interest is key for accurate quantification of isoform abundance when using any technology for transcriptome studies (3). Here we characterize the full-length transcriptome of paired tumor/normal samples from breast cancer using deep Iso-Seq sequencing. We highlight numerous discoveries of novel alternatively spliced isoforms, gene-fusion events, and previously unannotated genes that will improve our understanding of human cancer. (1) Faustino NA and Cooper TA. Genes and Development. 2003. 17: 419-437(2) Steijger T, et al. Nat Methods. 2013 Dec;10(12):1177-84.(3) Au KF, et al. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4821-30.


June 1, 2021  |  

Genome and transcriptome of the refeneration-competent flatworm, Macrostomum lignano

The free-living flatworm, Macrostomum lignano, much like its better known planarian relative, Schmidtea mediterranea, has an impressive regenerative capacity. Following injury, this species has the ability to regenerate almost an entirely new organism. This is attributable to the presence of an abundant somatic stem cell population, the neoblasts. These cells are also essential for the ongoing maintenance of most tissues, as their loss leads to irreversible degeneration of the animal. This set of unique properties makes a subset of flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of Macrostomum lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130X coverage by long sequencing reads from the PacBio platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene expression patterns during regeneration, examining pathways important to stem cell function. As a whole, our data will provide a crucial resource for the community for the study not only of invertebrate evolution and phylogeny but also of regeneration and somatic pluripotency.


June 1, 2021  |  

Cogent: Reconstructing the coding genome from full-length transcriptome sequences

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from Pacific Biosciences to sequence transcriptomes (the Iso-SeqTM method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of the genome using just the transcripts themselves. We present Cogent, a tool for finding gene families and reconstructing the coding genome in the absence of a reference genome. Cogent uses k-mer similarities to first partition the transcripts into different gene families. Then, for each gene family, the transcripts are used to build a splice graph. Cogent identifies bubbles resulting from sequencing errors, minor variants, and exon skipping events, and attempts to resolve each splice graph down to the minimal set of reconstructed contigs. We apply Cogent to a Cuttlefish Iso-Seq dataset, for which there is a highly fragmented, Illumina-based draft genome assembly and little annotation. We show that Cogent successfully discovers gene families and can reconstruct the coding region of gene loci. The reconstructed contigs can then be used to visualize alternative splicing events, identify minor variants, and even be used to improve genome assemblies.


June 1, 2021  |  

Full-length cDNA sequencing for genome annotation and analysis of alternative splicing

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties and functions. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be understated. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. We applied the Iso-Seq method to the maize (Zea mays) inbred line B73. Full-length cDNAs from six diverse tissues were barcoded and sequenced across multiple size-fractionated SMRTbell libraries. A total of 111,151 unique transcripts were identified. More than half of these transcripts (57%) represented novel, sometimes tissue-specific, isoforms of known genes. In addition to the 2250 novel coding genes and 860 lncRNAs discovered, the Iso-Seq dataset corrected errors in existing gene models, highlighting the value of full-length transcripts for whole gene annotations.


June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

A method for the identification of variants in Alzheimer’s disease candidate genes and transcripts using hybridization capture combined with long-read sequencing

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual risk variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2015;18:421-430). Long-read sequencing together with hybrid-capture targeting technologies provides a powerful combination to target candidate genes/transcripts of interest. Shearing the genomic DNA to ~5 kb fragments and then capturing with probes that span the whole gene(s) of interest can provide uniform coverage across the entire region, identifying variants and allowing for phasing into two haplotypes. Furthermore, capturing full-length cDNA from the same sample using the same capture probes can also provide an understanding of isoforms that are generated and allow them to be assigned to their corresponding haplotype. Here we present a method for capturing genomic DNA and cDNA from an AD sample using a panel of probes targeting approximately 20 late-onset AD candidate genes which includes CLU, ABCA7, CD33, TREM2, TOMM40, PSEN2, APH1 and BIN1. By combining xGen® Lockdown® probes with SMRT Sequencing, we provide completely sequenced candidate genes as well as their corresponding transcripts. In addition, we are also able to evaluate structural variants that due to their size, repetitive nature, or low sequence complexity have been un-sequenceable using short-read technologies.


June 1, 2021  |  

Alternative splicing in FMR1 premutations carriers

Over 40% of males and ~16% of female carriers of a FMR1 premutation allele (55-200 CGG repeats) are at risk for developing Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), an adult onset neurodegenerative disorder while, about 20% of female carriers will develop Fragile X-associated Primary Ovarian Insufficiency (FXPOI), in addition to a number of adult-onset clinical problems (FMR1 associated disorders). Marked elevation in FMR1 mRNA levels have been observed with premutation alleles and the resulting RNA toxicity is believed to be the leading molecular mechanism proposed for these disorders. The FMR1 gene, as many housekeeping genes, undergoes alternative splicing. Using long-read isoform sequencing (SMRT) and qRT-PCR we have recently reported that, although the relative abundance of all FMR1 mRNA isoforms is significantly increased in the premutation group compared to controls, there is a disproportionate increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14. In total, we confirmed the existence of 16 out of 24 predicted isoforms in our samples. However, it is unknown, which isoforms, when overexpressed, may contribute to the premutation pathology. To address this question we have further defined the transcriptional FMR1 isoforms distribution pattern in different tissues, including heart, muscle, brain and testis derived from FXTAS premutation carriers and age-matched controls. Preliminary data indicates the presence of a transcriptional signature of the FMR1 gene, which clusters more by individual than by tissue type. We identified additional isoforms than the 16 reported in our previous study, including a group with particular splice patterns that were observed only in premutations but not in controls. Our findings suggest that the characterization of expression levels of the different FMR1 isoforms is fundamental for understanding the regulation of the FMR1 gene as well as for elucidating the mechanism(s) by which “toxic gain of function” of the FMR1 mRNA may play a role in FXTAS and/or in the other FMR1-associated conditions. In addition to the elevated levels of FMR1 isoforms, the altered abundance/ratio of the corresponding FMRP isomers may affect the overall function of FMRP in premutations.


June 1, 2021  |  

Full-length cDNA sequencing on the PacBio Sequel platform

The protein coding potential of most plant and animal genomes is dramatically increased via alternative splicing. Identification and annotation of expressed mRNA isoforms is critical to the understanding of these complex organisms. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. The PacBio Sequel platform has improved throughput thereby increasing the number of full-length transcripts per SMRT Cell. Furthermore, loading enhancements on the Sequel instrument have decreased the need for size fractionation steps. We have optimized the Iso-Seq library preparation process for use on the Sequel platform. Here, we demonstrate the capabilities of the Iso-Seq method on the Sequel system using cDNAs from the maize (Zea mays) inbred line B73. Full-length cDNA from six diverse tissues were barcoded, pooled, and sequenced on the PacBio Sequel system using a combination of size-selected and non-size-selected SMRTbell libraries. The results highlight the value of full-length transcripts for genome annotations and analysis of alternative splicing.


June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.


June 1, 2021  |  

A method for the identification of variants in Alzheimer’s disease candidate genes and transcripts using hybridization capture combined with long-read sequencing

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual causal variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2015;18:421-430).


June 1, 2021  |  

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and full-length cDNA extracted from the temporal lobe for two Alzheimer’s patients for 35 GWAS candidate genes. The multi-kilobase long reads allowed for phasing across the genes and detection of a broad range of genomic variants including SNPs to multi-kilobase insertions, deletions and inversions. In the full-length cDNA data we detected differential allelic isoform complexity, novel exons as well as transcript isoforms. By combining the gDNA data with full-length isoform characterization allows to build a more comprehensive view of the underlying biological disease mechanisms in Alzheimer’s disease. Using the novel PCR-free CRISPR-Cas9 enrichment method we screened several genes including the hexanucleotide repeat expansion C9ORF72 that is associated with 40% of familiar ALS cases. This method excludes any PCR bias or errors from an otherwise hard to amplify region as well as preserves the basemodication in a single molecule fashion which allows you to capture mosaicism present in the sample.


June 1, 2021  |  

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional start sites, and poly- adenylation sites. This allows for the characterization of the full complement of isoforms within targeted genes, or across an entire transcriptome. Here we present improved genome annotations for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata), using the Iso-Seq method. We present graphical user interface and command line analysis workflows for the data sets. From brain total RNA, we characterize more than 15,000 isoforms in each species, 9% and 5% of which were previously unannotated in hummingbird and zebra finch, respectively. We highlight one example where capturing full-length transcripts identifies additional exons and UTRs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.