Menu
September 22, 2019  |  

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


September 22, 2019  |  

Comprehensive exploration of the rumen microbial ecosystem with advancements in metagenomics

Ruminant farming and its environmental impact has long remained an economic concern. Metagenomics unravel the vast structural and functional diversity of the rumen microbial community that plays a major role in animal nutrition. Hereby, we summarize rumen metagenomic studies that have enhanced the knowledge of rumen microbe dynamics subsequently leading to development of better feed strategies to improve livestock production and reduce methane emissions.


September 22, 2019  |  

Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant.

The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r?=?0.63, p?


September 22, 2019  |  

Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides.

Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in different ordered sequences. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability, and resilience and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness. Copyright © 2015, American Association for the Advancement of Science.


September 22, 2019  |  

Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation.

A microbial bioremediation product (MBP) used for large-scale oil degradation was investigated for microbial constituents and possible pathogenicity. Aerobic growth on various media yielded >108 colonies mL-1. Full-length 16S rDNA sequencing and fatty acid profiling from morphologically distinct colonies revealed =13 distinct genera. Full-length 16S rDNA library sequencing, by either Sanger or long-read PacBio technology, suggested that up to 21% of the MBP was composed of Arcobacter. Other high abundance microbial constituents (>6%) included the genera Proteus, Enterococcus, Dysgonomonas and several genera in the order Bacteroidales. The MBP was most susceptible to ciprofloxacin, doxycycline, gentamicin, and meropenam. MBP exposure of human HT29 and A549 cells caused significant cytotoxicity, and bacterial growth and adherence. An acellular MBP filtrate was also cytotoxic to HT29, but not A549. Both MBP and filtrate exposures elevated the neutrophil chemoattractant IL-8. In endotracheal murine exposures, bacterial pulmonary clearance was complete after one-week. Elevation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-a, and chemokines KC and MCP-1 occurred between 2h and 48h post-exposure, followed by restoration to baseline levels at 96h. Cytokine/chemokine signalling was accompanied by elevated blood neutrophils and monocytes at 4h and 48h, respectively. Peripheral acute phase response markers were maximal at 24h. All indicators examined returned to baseline values by 168h. In contrast to HT29, but similar to A549 observations, MBP filtrate did not induce significant murine effects with the indicators examined. The results demonstrated the potentially complex nature of MBPs and transient immunological effects during exposure. Products containing microbes should be scrutinized for pathogenic components and subjected to characterisation and quality validation prior to commercial release.


September 22, 2019  |  

Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.

The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3?m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.


September 22, 2019  |  

Anthropogenic N deposition alters the composition of expressed class II fungal peroxidases.

Here, we present evidence that ca. 20 years of experimental N deposition altered the composition of lignin-decaying class II peroxidases expressed by forest floor fungi, a response which has occurred concurrently with reductions in plant litter decomposition and a rapid accumulation of soil organic matter. This finding suggests that anthropogenic N deposition has induced changes in the biological mediation of lignin decay, the rate limiting step in plant litter decomposition. Thus, an altered composition of transcripts for a critical gene that is associated with terrestrial C cycling may explain the increased soil C storage under long-term increases in anthropogenic N deposition.IMPORTANCE Fungal class II peroxidases are enzymes that mediate the rate-limiting step in the decomposition of plant material, which involves the oxidation of lignin and other polyphenols. In field experiments, anthropogenic N deposition has increased soil C storage in forests, a result which could potentially arise from anthropogenic N-induced changes in the composition of class II peroxidases expressed by the fungal community. In this study, we have gained unique insight into how anthropogenic N deposition, a widespread agent of global change, affects the expression of a functional gene encoding an enzyme that plays a critical role in a biologically mediated ecosystem process. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils.

Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems, sodium/proton antiporters, and two copies of proton-translocating F1F0-type ATP synthase genes were identified, which might participate in the key pH homeostasis mechanisms in KS32. In addition, the V-type ATP synthase and urea assimilation genes might be used for pH homeostasis in KS41. Genes involved in the modification of membranes by incorporation of cyclopropane fatty acids and hopanoid lipids might be used for reducing proton influx into cells. The two methanotroph genomes possess genes for elaborate heavy metal efflux pumping systems, possibly owing to increased heavy metal toxicity in acidic conditions. Phylogenies of key genes involved in acid adaptation, methane oxidation, and antiviral defense in KS41 were incongruent with that of 16S rRNA. Thus, the detailed analysis of the genome sequences provides new insights into the ecology of methanotrophs responding to soil acidification.


September 22, 2019  |  

Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources

Sediment microbial fuel cells (SMFCs) are expected to be used as a renewable power source for remote environmental monitoring; therefore, evaluation of their long-term power performance is critical for their usability. In this paper, we present novel data needed to understand the long-term performance of SMFCs. We used 3-D Microemulsion (3DMe)™ doped anodes, which slowly release lactate and its fermented products. During our tests, anode-limited SMFCs with and without 3DMe-doped anodes were operated for more than 18 months with a load simulating a sensor operation. We found that doping an anode with an electron donor reduced startup time and increased maximum power (55 ± 2 µW compared to 46 ± 2 µW) in the control systems. We found that the long-term steady power performance is approximately 33% of the maximum power (~18 µW). Finally, our small-sized SMFCs generated higher power densities than those in the literature (28 mW/m2 versus 4 mW/m2). Using electron donor doped anodes can be practical when a short startup time and initial high power are needed. However, if long-term power is critical, the addition of an electron donor does not provide a practical advantage. In addition, in long-term operation enrichment of the anode surface with electrochemically active bacteria does not provide any advantage.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019  |  

Genome sequence determination and metagenomic characterization of a Dehalococcoides mixed culture grown on cis-1,2-dichloroethene.

A Dehalococcoides-containing bacterial consortium that performed dechlorination of 0.20 mM cis-1,2-dichloroethene to ethene in 14 days was obtained from the sediment mud of the lotus field. To obtain detailed information of the consortium, the metagenome was analyzed using the short-read next-generation sequencer SOLiD 3. Matching the obtained sequence tags with the reference genome sequences indicated that the Dehalococcoides sp. in the consortium was highly homologous to Dehalococcoides mccartyi CBDB1 and BAV1. Sequence comparison with the reference sequence constructed from 16S rRNA gene sequences in a public database showed the presence of Sedimentibacter, Sulfurospirillum, Clostridium, Desulfovibrio, Parabacteroides, Alistipes, Eubacterium, Peptostreptococcus and Proteocatella in addition to Dehalococcoides sp. After further enrichment, the members of the consortium were narrowed down to almost three species. Finally, the full-length circular genome sequence of the Dehalococcoides sp. in the consortium, D. mccartyi IBARAKI, was determined by analyzing the metagenome with the single-molecule DNA sequencer PacBio RS. The accuracy of the sequence was confirmed by matching it to the tag sequences obtained by SOLiD 3. The genome is 1,451,062 nt and the number of CDS is 1566, which includes 3 rRNA genes and 47 tRNA genes. There exist twenty-eight RDase genes that are accompanied by the genes for anchor proteins. The genome exhibits significant sequence identity with other Dehalococcoides spp. throughout the genome, but there exists significant difference in the distribution RDase genes. The combination of a short-read next-generation DNA sequencer and a long-read single-molecule DNA sequencer gives detailed information of a bacterial consortium. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


September 22, 2019  |  

Adaptive strategies of Bacillus thuringiensis isolated from acid mine drainage site in Sabah, Malaysia.

The adaptive process in bacteria is driven by specific genetic elements which regulate phenotypic characteristics such as tolerance to high metal ion concentrations and the secretion of protective biofilms. Extreme environments such as those associated with heavy metal pollution and extremes of acidity offer opportunities to study the adaptive mechanisms of microorganisms. This study focused on the genome analysis of Bacillus thuringiensis (Bt MCMY1), a gram positive rod shaped bacterium isolated from an acid mine drainage site in Sabah, Malaysia by using a combination of Single Molecule Real Time DNA Sequencing, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The genome size of Bt MCMY1 was determined to be 5,458,152 bases which was encoded on a single chromosome. Analysis of the genome revealed genes associated with resistance to Copper, Mercury, Arsenic, Cobalt, Zinc, Cadmium and Aluminum. Evidence from SEM and FTIR indicated that the bacterial colonies form distinct films which bear the signature of polyhydroxyalkanoates (PHA) and this finding was supported by the genome data indicating the presence of a genetic pathway associated with the biosynthesis of PHAs. This is the first report of a Bacillus sp. isolated from an acid mine drainage site in Sabah, Malaysia and the genome sequence will provide insights into the manner in which B. thuringiensis adapts to acid mine drainage.


September 22, 2019  |  

Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area.

Polybrominated diphenyl ethers (PBDEs) have become widespread environmental pollutants all over the world. A newly isolated bacterium from an e-waste recycling area, Stenotrophomonas sp. strain WZN-1, can degrade decabromodiphenyl ether (BDE 209) effectively under aerobic conditions. Orthogonal test results showed that the optimum conditions for BDE 209 biodegradation were pH 5, 25 °C, 0.5% salinity, 150 mL minimal salt medium volume. Under the optimized condition, strain WZN-1 could degrade 55.15% of 65 µg/L BDE 209 under aerobic condition within 30 day incubation. Moreover, BDE 209 degradation kinetics was fitted to a first-order kinetics model. The biodegradation mechanism of BDE 209 by strain WZN-1 were supposed to be three possible metabolic pathways: debromination, hydroxylation, and ring opening processes. Four BDE 209 degradation genes, including one hydrolase, one dioxygenase and two dehalogenases, were identified based on the complete genome sequencing of strain WZN-1. The real-time qPCR demonstrated that the expression level of four identified genes were significantly induced by BDE 209, and they played an important role in the degradation process. This study is the first to demonstrate that the newly isolated Stenotrophomonas strain has an efficient BDE 209 degradation ability and would provide new insights for the microbial degradation of PBDEs.


September 22, 2019  |  

Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3.

Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L-1, inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality

The cultivation of Panax plants is hindered by replanting problems, which may be caused by plant-driven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased, whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas, Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely, Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota, increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities; these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.