Menu
September 22, 2019  |  

Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve.

Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.


September 22, 2019  |  

Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15) with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of a-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15) and L. gasseri 4M13 (4M13) showed considerably higher anti-oxidation, inhibition of a-glucosidase activity, and cholesterol-lowering, and greater inhibition of nitric oxide production than other strains. Moreover, the two selected strains substantially inhibited the release of inflammatory mediators such as TNF-a, IL-6, IL-1ß, and IL-10 stimulated the treatment of RAW 264.7 macrophages with LPS. In addition, whole genome sequencing and comparative genomic analysis of 4B15 and 4M13 indicated them as novel genomic strains. These results suggested that 4B15 and 4M13 showed the highest probiotic potential and have an impact on immune health by modulating pro-inflammatory cytokines.


September 22, 2019  |  

Characterizing the DNA methyltransferases of Haloferax volcanii via bioinformatics, gene deletion, and SMRT Sequencing.

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeonHaloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase genes inH. volcaniiand sequenced the methylomes of the resulting deletion mutants via SMRT sequencing to characterize the genes responsible for DNA methylation. The results indicate that deletion of putative RM genesHVO_0794,HVO_A0006, andHVO_A0237in a single strain abolished methylation of the sole cytosine motif in the genome (Cm4TAG). Amino acid alignments demonstrated thatHVO_0794shares homology with characterized cytosine CTAG MTases in other organisms, indicating that this MTase is responsible for Cm4TAG methylation inH. volcanii. The CTAG motif has high density at only one of the origins of replication, and there is no relative increase in CTAG motif frequency in the genome ofH. volcanii, indicating that CTAG methylation might not have effectively taken over the role of regulating DNA replication and mismatch repair in the organism as previously predicted. Deletion of the putative Type I RM operonrmeRMS(HVO_2269-2271) resulted in abolished methylation of the adenine motif in the genome (GCAm6BN6VTGC). Alignments of the MTase (HVO_2270) and site specificity subunit (HVO_2271) demonstrate homology with other characterized Type I MTases and site specificity subunits, indicating that thermeRMSoperon is responsible for adenine methylation inH. volcanii. Together with HVO_0794, these genes appear to be responsible for all detected methylation inH. volcanii, even though other putative MTases (HVO_C0040,HVO_A0079) share homology with characterized MTases in other organisms. We also report the construction of a multi-RM deletion mutant (?RM), with multiple RM genes deleted and with no methylation detected via SMRT sequencing, which we anticipate will be useful for future studies on DNA methylation inH. volcanii.


September 22, 2019  |  

Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice.

Calorie restriction (CR), which has a potent anti-inflammaging effect, has been demonstrated to induce dramatic changes in the gut microbiota. Whether the modulated gut microbiota contributes to the attenuation of inflammation during CR is unknown, as are the members of the microbial community that may be key mediators of this process.Here, we report that a unique Lactobacillus-predominated microbial community was rapidly attained in mice within 2 weeks of CR, which decreased the levels of circulating microbial antigens and systemic inflammatory markers such as tumour necrosis factor alpha (TNF-a). Lactobacillus murinus CR147, an isolate in the most abundant operational taxonomic unit (OTU) enriched by CR, downregulated interleukin-8 production in TNF-a-stimulated Caco-2 cells and significantly increased the lifespan and the brood size of the nematode Caenorhabditis elegans. In gnotobiotic mice colonized with the gut microbiota from old mice, this strain decreased their intestinal permeability and serum endotoxin load, consequently attenuating the inflammation induced by the old microbiota.Our study demonstrated that a strain of Lactobacillus murinus was promoted in CR mice and causatively contributed to the attenuation of ageing-associated inflammation.


September 22, 2019  |  

Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes

The potential of newly isolated Lactobacillus amylolyticus L6 as probiotics was investigated based on the whole genome sequence and corresponding phenotypes. With Lactobacillus acidophilus NCFM as positive control, several established methods of evaluating potential probiotics were performed on L. amylolyticus L6. The results indicated that L. amylolyticus L6 retained higher viability in human gastrointestinal (GI) tract and it also had strong inhibitory effect on pathogenic bacteria. Meanwhile, the candidate probiotics exhibited similar adhesion level as that of L. acidophilus NCFM in vitro test. As for carbohydrate utilization profile, L. amylolyticus L6 had high ability of utilizing raffinose and stachyose which were known as flatulence factors in soybean products. And this strain could also utilize starch. Besides, the mechanisms of probiotic and metabolic properties for L. amylolyticus L6 were further illustrated with the identification of related genes through the analysis of genome sequence. Therefore, we proposed that L. amylolyticus L6 have the potential to be used as probiotics from phenotypes to genotypes. And it is the first time that the complete genome sequence of L. amylolyticus L6 and the potential of this strain to be used as probiotics were reported in this study.


September 22, 2019  |  

Genome-wide comparison reveals a probiotic strain Lactococcus lactis WFLU12 isolated from the gastrointestinal tract of olive flounder (Paralichthys Olivaceus) harboring genes supporting probiotic action.

Our previous study has shown that dietary supplementation with Lactococcus lactis WFLU12 can enhance the growth of olive flounder and its resistance against streptococcal infection. The objective of the present study was to use comparative genomics tools to investigate genomic characteristics of strain WFLU12 and the presence of genes supporting its probiotic action using sequenced genomes of L. lactis strains. Dispensable and singleton genes of strain WFLU12 were found to be more enriched in genes associated with metabolism (e.g., energy production and conversion, and carbohydrate transport and metabolism) than pooled dispensable and singleton genes in other L. lactis strains, reflecting WFLU12 strain-specific ecosystem origin and its ability to metabolize different energy sources. Strain WFLU12 produced antimicrobial compounds that could inhibit several bacterial fish pathogens. It possessed the nisin gene cluster (nisZBTCIPRKFEG) and genes encoding lysozyme and colicin V. However, only three other strains (CV56, IO-1, and SO) harbor a complete nisin gene cluster. We also found that L. lactis WFLU12 possessed many other important functional genes involved in stress responses to the gastrointestinal tract environment, dietary energy extraction, and metabolism to support the probiotic action of this strain found in our previous study. This strongly indicates that not all L. lactis strains can be used as probiotics. This study highlights comparative genomics approaches as very useful and powerful tools to select probiotic candidates and predict their probiotic effects.


September 22, 2019  |  

Genomic and probiotic characterization of SJP-SNU strain of Pichia kudriavzevii.

The yeast strain SJP-SNU was investigated as a probiotic and was characterized with respect to growth temperature, bile salt resistance, hydrogen sulfide reducing activity, intestinal survival ability and chicken embryo pathogenicity. In addition, we determined the complete genomic and mitochondrial sequences of SJP-SNU and conducted comparative genomics analyses. SJP-SNU grew rapidly at 37 °C and formed colonies on MacConkey agar containing bile salt. SJP-SNU reduced hydrogen sulfide produced by Salmonella serotype Enteritidis and, after being fed to 4-week-old chickens, could be isolated from cecal feces. SJP-SNU did not cause mortality in 10-day-old chicken embryos. From 13 initial contigs, 11 were finally assembled and represented 10 chromosomal sequences and 1 mitochondrial DNA sequence. Comparative genomic analyses revealed that SJP-SNU was a strain of Pichia kudriavzevii. Although SJP-SNU possesses pathogenicity-related genes, they showed very low amino acid sequence identities to those of Candida albicans. Furthermore, SJP-SNU possessed useful genes, such as phytases and cellulase. Thus, SJP-SNU is a useful yeast possessing the basic traits of a probiotic, and further studies to demonstrate its efficacy as a probiotic in the future may be warranted.


September 22, 2019  |  

Evolutionary history of bacteriophages in the genus Paraburkholderia.

The genus Paraburkholderia encompasses mostly environmental isolates with diverse predicted lifestyles. Genome analyses have shown that bacteriophages form a considerable portion of some Paraburkholderia genomes. Here, we analyzed the evolutionary history of prophages across all Paraburkholderia spp. Specifically, we investigated to what extent the presence of prophages and their distribution affect the diversity/diversification of Paraburkholderia spp., as well as to what extent phages coevolved with their respective hosts. Particular attention was given to the presence of CRISPR-Cas arrays as a reflection of past interactions with phages. We thus analyzed 36 genomes of Paraburkholderia spp., including those of 11 new strains, next to those of three Burkholderia species. Most genomes were found to contain at least one full prophage sequence. The highest number was found in Paraburkholderia sp. strain MF2-27; the nine prophages found amount to up to 4% of its genome. Among all prophages, potential moron genes (e.g., DNA adenine methylase) were found that might be advantageous for host cell fitness. Co-phylogenetic analyses indicated the existence of complex evolutionary scenarios between the different Paraburkholderia hosts and their prophages, including short-term co-speciation, duplication, host-switching and phage loss events. Analysis of the CRISPR-Cas systems showed a record of diverse, potentially recent, phage infections. We conclude that, overall, different phages have interacted in diverse ways with their Paraburkholderia hosts over evolutionary time.


September 22, 2019  |  

Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain.

Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function in defense mechanisms, and lipid transport and metabolism, in comparison with other L. plantarum strains reported. The present study demonstrates the comprehensive analysis of genes related to probiotic functionalities of an EPS-producing L. plantarum strain based on whole genome sequencing.


September 22, 2019  |  

Comparative genomics and genotype-phenotype associations in Bifidobacterium breve.

Bifidobacteria are common members of the gastro-intestinal microbiota of a broad range of animal hosts. Their successful adaptation to this particular niche is linked to their saccharolytic metabolism, which is supported by a wide range of glycosyl hydrolases. In the current study a large-scale gene-trait matching (GTM) effort was performed to explore glycan degradation capabilities in B. breve. By correlating the presence/absence of genes and associated genomic clusters with growth/no-growth patterns across a dataset of 20 Bifidobacterium breve strains and nearly 80 different potential growth substrates, we not only validated the approach for a number of previously characterized carbohydrate utilization clusters, but we were also able to discover novel genetic clusters linked to the metabolism of salicin and sucrose. Using GTM, genetic associations were also established for antibiotic resistance and exopolysaccharide production, thereby identifying (novel) bifidobacterial antibiotic resistance markers and showing that the GTM approach is applicable to a variety of phenotypes. Overall, the GTM findings clearly expand our knowledge on members of the B. breve species, in particular how their variable genetic features can be linked to specific phenotypes.


September 22, 2019  |  

Complete genome sequence of Enterococcus durans KLDS6.0933, a potential probiotic strain with high cholesterol removal ability

Enterococci are commensal bacteria in the mammalian gastrointestinal tract which play an important role in the production of various fermented foods. Thus, certain enterococcal strains are commonly used as probiotics to confer health benefits to human and animals. Enterococcus durans KLDS6.0933 is a potential probiotic strain with high cholesterol removal ability, which was isolated from traditional naturally fermented cream in Inner Mongolia of China. To better understand the genetic basis of the probiotic properties of this strain, the whole-genome sequence was performed using the PacBio RSII platform.


September 22, 2019  |  

Large scale changes in host methylation patterns induced by IncA/C plasmid transformation in Vibrio cholerae

DNA methylation is a central epigenetic modification and has diverse biological functions in eukaryotic and prokaryotic organisms alike. The IncA/C plasmid genomes are approximately 150kb in length and harbour three methylase genes, two of which demonstrate cytosine specificity. Transformation of the Vibrio cholerae strain C6706 with the IncA/C plasmid pVC211 resulted in a significant relabelling of the methylation patterns on the host chromosomes. The new methylation patterns induced by transformation with IncA/C plasmid were accepted by the restriction enzymes of the hosttextquoterights restriction modification (RM) system. These data uncover a novel mechanism by which plasmids can be compatible with a hosttextquoterights RM system and suggest a possible reason that plasmids of the IncA/C family are broad-host-range.


September 22, 2019  |  

Genomics of Corynebacterium striatum, an emerging multidrug-resistant pathogen of immunocompromised patients.

Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen of immunocompromised and chronically ill patients. The objective of these studies was to provide a detailed genomic analysis of disease-causing C. striatum and determine the genomic drivers of resistance and resistance-gene transmission.A multi-institutional and prospective pathogen genomics programme flagged seven MDR C. striatum infections occurring close in time, and specifically in immunocompromised patients with underlying respiratory diseases. Whole genome sequencing was used to identify clonal relationships among strains, genetic causes of antimicrobial resistance, and their mobilization capacity. Matrix-assisted linear desorption/ionization-time-of-flight analyses of sequenced isolates provided curated content to improve rapid clinical identification in subsequent cases.Epidemiological and genomic analyses identified a related cluster of three out of seven C. striatum among lung transplant patients who had common procedures and exposures at an outlying institution. Genomic analyses further elucidated drivers of the MDR phenotypes, including resistance genes mobilized by IS3504 and ISCg9a-like insertion sequences. Seven mobilizable resistance genes were localized to a common chromosomal region bounded by unpaired insertion sequences, suggesting that a single recombination event could spread resistance to aminoglycosides, macrolides, lincosamides and tetracyclines to naive strains.In-depth genomic studies of MDR C. striatum reveal its capacity for clonal spread within and across healthcare institutions and identify novel vectors that can mobilize multiple forms of drug resistance, further complicating efforts to treat infections in immunocompromised populations. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.


September 22, 2019  |  

A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii

Listeria monocytogenes and Cronobacter sakazakii are notorious pathogens involved in numerous foodborne outbreaks after ingested contaminated food. Bacteriocins are natural food preservatives, some of which have antimicrobial activity comparable with antibiotics. In this study, a plasmid encoded novel bacteriocin BMP11 produced by Lactobacillus crustorum MN047 was innovatively identified by combining complete genome and LC-MS/MS. The BMP11 was found to have rich a-helix conformation after prediction. Moreover, the antimicrobial activity of BMP11 was verified after its heterologous expression in E. coli with 1280 and 640 AU/mL against L. monocytogenes and C. sakazakii, respectively. After purification by anion-exchange chromatography and HPLC, BMP11 had MIC values of 0.3–38.4?µg/mL against tested foodborne pathogens. Further, it was found that BMP11 had bactericidal action mode with concomitant cell lysis to pathogens by growth curve and time-kill kinetics. The results of scanning electron microscope (SEM) and transmission electron microscope (TEM) indicated that BMP11 destroyed the integrity of cell envelope of pathogens with cell wall perforation and cell membrane permeabilization. The destruction of cell envelope integrity was further verified by propidium iodide (PI) uptake and lactic dehydrogenase (LDH) release. BMP11 increased inner-membrane permeability of C. sakazakii in a concentration-dependent manner. Meanwhile, BMP11 exhibited antibiofilm formation activity. In addition, BMP11 inhibited the growth of L. monocytogenes in milk. Therefore, BMP11 had promising potential as antimicrobial to control foodborne pathogens in dairy products.


September 22, 2019  |  

Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.