Menu
September 22, 2019  |  

Evaluation of bacterial contamination in goat milk powder using PacBio Single Molecule Real-Time Sequencing and Droplet Digital PCR.

Goat milk powder is a nutritious and easy-to-store product that is highly favored by consumers. However, the presence of contaminating bacteria and their metabolites may significantly affect the flavor, solubility, shelf life, and safety of the product. To comprehensively and accurately understand the sanitary conditions in the goat milk powder production process and potential threats from bacterial contamination, a combination of Pacific Biosciences single molecule real-time sequencing and droplet digital PCR was used to evaluate bacterial contamination in seven goat milk powder samples from three dairies. Ten phyla, 119 genera, and 249 bacterial species were identified. Bacillus, Paenibacillus, Lactococcus, and Cronobacter were the primary genera. Bacillus cereus, Lactococcus lactis, Alkaliphilus oremlandii, and Cronobacter sakazakii were the dominant species. With droplet digital PCR, 6.3 × 104 copies per g of Bacillus cereus and 1.0 × 104 copies per g of Cronobacter spp. were quantified, which may increase the risk of food spoilage and the probability of foodborne illness and should be monitored and controlled. This study offers a new approach for evaluating bacterial contamination in goat milk powder and supplies a reference for the assessment of food safety and control of potential risk, which will be of interest to the dairy industry.


September 22, 2019  |  

Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs.

The mammalian gastrointestinal tract is a heterogeneous ecosystem with the most abundant, and one of the most diverse, microbial communities. The gut microbiota, which may contain more than 100 times the number of genes in the human genome, endows the host with beneficial functional features, including colonization resistance, nutrient metabolism, and immune tolerance (Bäckhed, 2005). Dysbiosis of gut microbiota may result in serious adverse consequences for the host, such as neurological disorders, cancer, obesity, malnutrition, inflammatory dysregulation, and susceptibility to pathogens


September 22, 2019  |  

Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation

The genomic and metabolic features of Weissella koreensis, one of the major lactic acid bacteria in kimchi, were investigated through genomic, metabolic, and transcriptomic analyses for the genomes of strains KCTC 3621T, KACC 15510, and WiKim0080. W. koreensis strains were intrinsically vancomycin-resistant and harbored potential hemolysin genes that were actively transcribed although no hemolysin activity was detected. KEGG and reconstructed fermentative metabolic pathways displayed that W. koreensis strains commonly employ the heterolactic pathway to produce d-lactate, ethanol, acetate, CO2, d-sorbitol, thiamine, and folate from various carbohydrates including d-glucose, d-mannose, d-lactose, l-malate, d-xylose, l-arabinose, d-ribose, N-acetyl-glucosamine, and gluconate, and strains KCTC 3621T and WiKim0080 additionally have metabolic pathways of d-galacturonate and d-glucoronate. Phenotypic analyses showed that all strains did not ferment d-galactose, probably due to the lack of d-galactose transporting system, and strains KCTC 3621T and WiKim0080 fermented d-fructose, indicating the presence of d-fructose transporting system. Fermentative features of W. koreensis were investigated through kimchi transcriptional analysis, suggesting that W. koreensis is mainly responsible for kimchi fermentation with the production of various fermentative metabolites during late fermentation period. This was the first study to investigate the genomic and metabolic features of W. koreensis, which may provide better understandings on kimchi fermentation.


September 22, 2019  |  

Emerging multidrug-resistant hybrid pathotype shiga toxin-producing Escherichia coli O80 and related strains of clonal complex 165, Europe.

Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-?, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum ß-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.


September 22, 2019  |  

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.