Menu
April 21, 2020  |  

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


April 21, 2020  |  

Complete Genome Sequence of a Parabacteroides distasonis Strain (CavFT hAR46) Isolated from a Gut Wall-Cavitating Microlesion in a Patient with Severe Crohn’s Disease.

Crohn’s disease (CD) is a chronic inflammatory bowel disease (IBD) of the digestive tract in humans. There is evidence that Parabacteroides distasonis could contribute to IBD. Here, we present the complete genome sequence of a strain designated CavFT-hAR46, which was isolated from a gut intramural cavernous fistulous tract (CavFT) microlesion in a CD patient.Copyright © 2019 Yang et al.


April 21, 2020  |  

Complete Genome Sequence of Leisingera aquamixtae R2C4, Isolated from a Self-Regenerating Biocathode Consortium.

Here, we present the complete genome sequence of Leisingera aquamixtae R2C4, isolated from the electroautotrophic microbial consortium biocathode MCL (Marinobacter-Chromatiaceae-Labrenzia). As an isolate of a current-producing system, the genome sequence of L. aquamixtae will yield insights regarding electrode-associated microorganisms and communities. A dark pigment is also observed during cultivation.Copyright © 2019 Bird et al.


April 21, 2020  |  

Draft Genome Sequence of Dicyma pulvinata Strain 414-3, a Mycoparasite of Cladosporium fulvum, Causal Agent of Tomato Leaf Mold.

Dicyma pulvinata strain 414-3, isolated from the surface of a tomato leaf, is a mycoparasitic fungus of Cladosporium fulvum, which causes leaf mold of tomato. We report here the draft genome sequence of strain 414-3, which will contribute to elucidating the molecular mechanisms involved in the mycoparasitism.Copyright © 2019 Sushida et al.


April 21, 2020  |  

Complete Genome Sequence of Subcluster 5.2 Synechococcus sp. Strain CB0101, Isolated from the Chesapeake Bay.

Synechococcus sp. strain CB0101 is a model strain for cyanobacteria living in the estuarine environment. It is also a representative member of marine Synechococcus subcluster 5.2. The draft genome sequence of CB0101 was reported in 2014 with 454 sequencing. Here, we report the complete genome sequence of CB0101, obtained with PacBio sequencing. CB0101 contains a specialized array of genes which are involved in sensing, responding to, and persisting in the presence of environmental stress.Copyright © 2019 Fucich et al.


April 21, 2020  |  

Complete Genome Sequence of Streptomyces sp. Strain SGAir0924, an Actinobacterium Isolated from Outdoor Air in Singapore.

Streptomyces sp. strain SGAir0924 was isolated from outdoor air collected in Singapore. Its genome was assembled using long reads generated by single-molecule real-time sequencing. The final assembly had one chromosome of 7.65?Mb and three plasmids with an average length of 142 kb. The genome contained 6,825 protein-coding genes, 68 tRNAs, and 18 rRNAs.Copyright © 2019 Gupta et al.


April 21, 2020  |  

Draft Genome Sequence of Streptomyces sp. Strain RKND-216, an Antibiotic Producer Isolated from Marine Sediment in Prince Edward Island, Canada.

Streptomyces sp. strain RKND-216 was isolated from marine sediment collected in Prince Edward Island, Canada, and produces a putatively novel bioactive natural product with antitubercular activity. The genome assembly consists of two contigs covering 5.61?Mb. Genome annotation identified 4,618 predicted protein-coding sequences and 19 predicted natural product biosynthetic gene clusters.Copyright © 2019 Liang et al.


April 21, 2020  |  

Complete Genome Sequence of Dehalococcoides mccartyi Strain FL2, a Trichloroethene-Respiring Anaerobe Isolated from Pristine Freshwater Sediment.

Dehalococcoides mccartyi strain FL2 couples growth to hydrogen oxidation and reductive dechlorination of trichloroethene and cis- and trans-1,2-dichloroethenes. Strain FL2 has a 1.42-Mb genome with a G+C content of 47.0% and carries 1,465 protein-coding sequences, including 24 reductive dehalogenase genes.Copyright © 2019 Yan et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.