Menu
July 7, 2019  |  

Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium.

Environmental pollution caused by the release of industrial chemicals is currently one of the most important environmental harms. Manufacturing chemicals can be biodegraded, and valuable intermediates can be used as pharmacophores in drug targeting and have several other useful purposes. Hexabromocyclododecane (HBCD), a non-aromatic brominated flame retardant, is a toxic compound that consists of a cycloaliphatic ring of 12 carbon atoms to which six bromine atoms are attached. It is formed by bromination of cis-trans-trans-1,5,9-cyclododecatriene, but its use is now restricted in several countries, because it is an environmental pollutant. Little is known about whether bacteria can degrade HBCD. A bacterial strain that degrades HBCD was recently isolated using enrichment culture techniques. Based on morphological, biochemical and phylogenetic analysis this isolate was categorized as Bacillus cereus and named strain HBCD-sjtu. Maximum growth and HBCD-degrading activity were observed when this strain was grown at 30 °C, pH 7.0 and 200 RPM in mineral salt medium containing 0.5 mm HBCD. The genome of strain HBCD-sjtu, which consists of only one circular chromosome, was sequenced. This whole genome sequence will be crucial for illuminating the molecular mechanisms of HBCD degradation.


July 7, 2019  |  

Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism

Progesterone (PGT) is not completely removed in conventional treatment plants, and the processing results may have adverse effects on aquatic organisms. In this study, an effective PGT-degradation bacterium, Rhodococcus sp. HYW, was newly isolated from the pharmaceutical plant and was used to augment degradation of PGT. When grown in a mineral medium (MM) containing a trace amount of PGT (500?µg/L) as the sole carbon and energy source, the results show that 99% of PGT was degraded within 1?h and followed the first-order reaction kinetics. Bioaugmentation of PGT-contaminated activated sludge greatly enhanced the PGT degradation rate (~91%) and its derivatives degradation rate were also greatly improved (>83%). The process of PGT degradation in non-bioaugmented PGT-contaminated activated sludge (NBS) and bioaugmentation activated sludge with the bacterial consortium(BS) also conforms to the first-order kinetic model. Furthermore, 12 and 11 biodegradation products for PGT in the NBS and BS were identified using HPLC-LTQ-Orbitrap XL™, respectively. Based on these biodegradation products, two degradation pathways for PGT in NBS and BS were proposed, respectively. Comparing the degradation kinetics and metabolites, it was found that BS degrades PGT more rapidly and can further convert PGT to a small molecular acid. Finally, to reveal the probable cause for the differences in the PGT degradation efficiency and products in the NBS and BS.


July 7, 2019  |  

The complete genome sequence of Bacillus halotolerans ZB201702 isolated from a drought- and salt-stressed rhizosphere soil.

Bacillus halotolerans is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. Here, we present the complete genome sequence of B. halotolerans ZB201702, which consists of 4,150,000 bp in a linear chromosome, including 3074 protein-coding sequences, 30 rRNAs, and 85 tRNAs. Genome analysis revealed many putative gene clusters involved in defense mechanisms. Activity analysis of the strain under salt and simulated drought stress suggests tolerance to abiotic stresses. The complete genome information of B. halotolerans ZB201702 could provide valuable insights into rhizobacteria-mediated plant salt and drought tolerance and rhizobacteria-based solutions for abiotic stress agriculture. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.


July 7, 2019  |  

Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities.

Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, ß-glucosidase, and ß-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.


July 7, 2019  |  

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system.We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci.


July 7, 2019  |  

Complete genome sequence of Agrobacterium pusense VsBac-Y9, a bacterial symbiont of the dark septate endophytic fungus Veronaeopsis simplex Y34 with potential for improving fungal colonization in roots.

A Rhizobium-related bacterium (Rhizobium sp. VsBac-Y9) is a symbiont living with the dark septate endophytic (DSE) fungus Veronaeopsis simplex Y34. Co-inoculation of Rhizobium sp. VsBac-Y9 with V. simplex Y34 improves the fungal colonization of tomato roots, resulting in a significant increase in aboveground biomass. This study sequenced the complete genome of this V. simplex-helper bacterium using the PacBio and Illumina MiSeq platforms. Hybrid assembly using SPAdes outputted a circular chromosome, a linear chromid, and a circular plasmid for a total genome 5,321,211 bp in size with a G?+?C content of 59.2%. Analysis of concatenated housekeeping genes (atpD-dnaK-groEL-lepA-recA-rpoB-thrE) and calculation of average nucleotide identity, showed that VsBac-Y9 was affiliated with the species Agrobacterium pusense (syn. Rhizobium pusense). Genome analysis revealed that A. pusense VsBac-Y9 contains a series of genes responsible for the host interactions with both fungus and plant. Such genomic information will provide new insights into developing co-inoculants of endophytic fungus and its symbiotic bacterium in future agricultural innovation. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Near- complete genome sequences of Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.

Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines, are active against Bacillus subtilis subsp. subtilis KCTC 3135T. The near-complete genome sequences reported here represent a possible source of ribosomally synthesized, posttranslationally mod- ified peptides, such as lantipeptides, bacteriocins, linaridin, and a lasso peptide.


July 7, 2019  |  

Complete genome sequence of an efficient vitamin D3-hydroxylating bacterium, Pseudonocardia autotrophica NBRC 12743.

Pseudonocardia autotrophica NBRC 12743 contains a cytochrome P450 vitamin D3hydroxylase, and it is used as a biocatalyst for the commercial produc- tion of hydroxyvitamin D3, a valuable compound for medication. Here, we report the complete genome sequence of P. autotrophica NBRC 12743, which could be useful for improving the productivity of hydroxyvitamin D3.


July 7, 2019  |  

Complete genome sequence of Bacillus megaterium strain TG1-E1, a plant drought tolerance-enhancing bacterium.

Based on a combination of next-generation sequencing and single-molecule sequencing, we obtained the whole-genome sequence of Bacillus megaterium strain TG1-E1, which is a highly salt-tolerant rhizobacterium that enhances plant tolerance to drought stress. The complete genome is estimated to be approximately 5.48 Mb containing a total of 5,858 predicted protein-coding DNA sequences.


July 7, 2019  |  

Fe-S cluster assembly in oxymonads and related protists.

The oxymonad Monocercomonoides exilis was recently reported to be the first eukaryote that has completely lost the mitochondrial compartment. It was proposed that an important prerequisite for such a radical evolutionary step was the acquisition of the SUF Fe-S cluster assembly pathway from prokaryotes, making the mitochondrial ISC pathway dispensable. We have investigated genomic and transcriptomic data from six oxymonad species and their relatives, composing the group Preaxostyla (Metamonada, Excavata), for the presence and absence of enzymes involved in Fe-S cluster biosynthesis. None possesses enzymes of mitochondrial ISC pathway and all apparently possess the SUF pathway, composed of SufB, C, D, S, and U proteins, altogether suggesting that the transition from ISC to SUF preceded their last common ancestor. Interestingly, we observed that SufDSU were fused in all three oxymonad genomes, and in the genome of Paratrimastix pyriformis. The donor of the SUF genes is not clear from phylogenetic analyses, but the enzyme composition of the pathway and the presence of SufDSU fusion suggests Firmicutes, Thermotogae, Spirochaetes, Proteobacteria, or Chloroflexi as donors. The inventory of the downstream CIA pathway enzymes is consistent with that of closely related species that retain ISC, indicating that the switch from ISC to SUF did not markedly affect the downstream process of maturation of cytosolic and nuclear Fe-S proteins.


July 7, 2019  |  

The molecular basis for the intramolecular migration (NIH shift) of the carboxyl group during para-hydroxybenzoate catabolism.

The NIH shift is a chemical rearrangement in which a substituent on an aromatic ring undergoes an intramolecular migration, primarily during an enzymatic hydroxylation reaction. The molecular mechanism for the NIH shift of a carboxyl group has remained a mystery for 40 years. Here, we elucidate the molecular mechanism of the reaction in the conversion of para-hydroxybenzoate (PHB) to gentisate (GA, 2, 5-dihydroxybenzoate). Three genes (phgABC) from the PHB utilizer Brevibacillus laterosporus PHB-7a encode enzymes (p-hydroxybenzoyl-CoA ligase, p-hydroxybenzoyl-CoA hydroxylase and gentisyl-CoA thioesterase, respectively) catalyzing the conversion of PHB to GA via a route involving CoA thioester formation, hydroxylation concomitant with a 1, 2-shift of the acetyl CoA moiety and thioester hydrolysis. The shift of the carboxyl group was established rigorously by stable isotopic experiments with heterologously expressed phgABC, converting 2, 3, 5, 6-tetradeutero-PHB and [carboxyl-13 C]-PHB to 3, 4, 6-trideutero-GA and [carboxyl-13 C]-GA respectively. This is distinct from the NIH shifts of hydrogen and aceto substituents, where a single oxygenase catalyzes the reaction without the involvement of a thioester. The discovery of this three-step strategy for carboxyl group migration reveals a novel role of the CoA thioester in biochemistry and also illustrates the diversity and complexity of microbial catabolism in the carbon cycle.© 2018 John Wiley & Sons Ltd.


July 7, 2019  |  

The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil.

Planococcus maritimus Y42, isolated from the petroleum-contaminated soil of the Qaidam Basin, can use crude oil as its sole source of carbon and energy at 20 °C. The genome of P. maritimus strain Y42 has been sequenced to provide information on its properties. Genomic analysis shows that the genome of strain Y42 contains one circular DNA chromosome with a size of 3,718,896 bp and a GC content of 48.8%, and three plasmids (329,482; 89,073; and 12,282 bp). Although the strain Y42 did not show a remarkably higher ability in degrading crude oil than other oil-degrading bacteria, the existence of strain Y42 played a significant role to reducing the overall environmental impact as an indigenous oil-degrading bacterium. In addition, genome annotation revealed that strain Y42 has many genes responsible for hydrocarbon degradation. Structural features of the genomes might provide a competitive edge for P. maritimus strain Y42 to survive in oil-polluted environments and be worthy of further study in oil degradation for the recovery of crude oil-polluted environments.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.