X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, January 6, 2021

PAG Conference: Update on sequencing of the Cabernet sauvignon genome

Grant Cramer from the University of Nevada, Reno, and Dario Cantu from the Univeristy of Callifornia, Davis, discuss past challenges with sequencing Clone 8 of Cabernet Sauvignon (Vitis vinifera). An assembly of the genome was attempted with approximately 110x Illumina reads and 5x PacBio reads. The PacBio SMRT Sequencing read made major improvements in the assembly compared with the results of Illumina reads only. However, the assembly results were still unsatisfactory, so an additional 100-fold SMRT Sequencing coverage had been generated. An update on the current sequencing results and status of the assembly are presented.

Read More »

Wednesday, January 6, 2021

PAG PacBio Workshop: De novo sequencing of the koala genome

Rebecca Johnson, director of the Australian Museum Research Institute presents finding from de novo sequencing of the koala genome. Using PacBio sequencing the Koala Genome Consortium obtained an assembly with an N50 of 11.5 Mbp and have undertaken functional genomic analysis highlighting the unique genes associated with lactation and immune function of koalas. Johnson goes on to describe efforts to obtain a chromosome level assembly and current work using ‘super scaffolding’ to compare shared synteny across diverse lineages to generate chromosome scaffold maps.

Read More »

Wednesday, January 6, 2021

PAG Conference: The Bat1K project: bat genome, biology and implications

In this presentation, Sonja Vernes of the Max Plank Institute shares her work with the Bat1K project which aims to catalog the genetic diversity of all living bat species. She highlights the unique biology of bats, from their widely varying sizes to their capacity for healthy aging and disease resistance and provides recent findings from ongoing efforts to sequence and annotate the genomes of 21 phylogenetic families of bats.

Read More »

Tuesday, December 22, 2020

Integrative biology of a fungus: Using PacBio SMRT Sequencing to interrogate the genome, epigenome, and transcriptome of Neurospora crassa.

PacBio SMRT Sequencing has the unique ability to directly detect base modifications in addition to the nucleotide sequence of DNA. Because eukaryotes use base modifications to regulate gene expression, the absence or presence of epigenetic events relative to the location of genes is critical to elucidate the function of the modification. Therefore an integrated approach that combines multiple omic-scale assays is necessary to study complex organisms. Here, we present an integrated analysis of three sequencing experiments: 1) DNA sequencing, 2) base-modification detection, and 3) Iso-seq analysis, in Neurospora crassa, a filamentous fungus that has been used to make many landmark…

Read More »

Tuesday, December 22, 2020

Old school/new school genome sequencing: One step backward — a quantum leap forward.

As the costs for genome sequencing have decreased the number of “genome” sequences have increased at a rapid pace. Unfortunately, the quality and completeness of these so–called “genome” sequences have suffered enormously. We prefer to call such genome assemblies as “gene assembly space” (GAS). We believe it is important to distinguish GAS assemblies from reference genome assemblies (RGAs) as all subsequent research that depends on accurate genome assemblies can be highly compromised if the only assembly available is a GAS assembly.

Read More »

Tuesday, December 22, 2020

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic…

Read More »

Tuesday, December 22, 2020

Assessing diversity and clonal variation of Australia’s grapevine germplasm: Curating the FALCON-Unzip Chardonnay de novo genome assembly

Until recently only two genome assemblies were publicly available for grapevine—both Vitis vinifera L. Cv. Pinot Noir (PN). The best available PN genome assembly (Jaillon et al. 2007) is not representative of the genome complexity that is typical of wine-grape cultivars in the field and it is highly fragmented. To assess the genetic complexities of Chardonnay grapevine, assembly of a new de novo reference genome was needed. Here we describe a draft assembly using PacBio SMRT Sequencing data and PacBio’s new phased diploid genome assembler FALCON-Unzip (Chin et al. 2016).

Read More »

Tuesday, December 22, 2020

Haplotyping of full-length transcript reads from long-read sequencing can reveal allelic imbalances in isoform expression

The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated…

Read More »

Tuesday, April 21, 2020

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated…

Read More »

Tuesday, April 21, 2020

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a…

Read More »

Tuesday, April 21, 2020

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based,…

Read More »

Tuesday, April 21, 2020

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of…

Read More »

Tuesday, April 21, 2020

Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence…

Read More »

Tuesday, April 21, 2020

Complete genome sequence and characterization of virulence genes in Lancefield group C Streptococcus dysgalactiae isolated from farmed amberjack (Seriola dumerili).

Lancefield group C Streptococcus dysgalactiae causes infections in farmed fish. Here, the genome of S. dysgalactiae strain kdys0611, isolated from farmed amberjack (Seriola dumerili) was sequenced. The complete genome sequence of kdys0611 consists of a single chromosome and five plasmids. The chromosome is 2,142,780?bp long and has a GC content of 40%. It possesses 2061 coding sequences and 67 tRNA and 6 rRNA operons. One clustered regularly interspaced short palindromic repeat, 125 insertion sequences, and four predicted prophage elements were identified. Phylogenetic analysis based on 126 core genes suggested that the kdys0611 strain is more closely related to S. dysgalactiae…

Read More »

1 2 3 19

Subscribe for blog updates:

Archives