fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the…

Read More »

Sunday, September 22, 2019

Full-length isoform sequencing reveals novel transcripts and substantial transcriptional overlaps in a herpesvirus.

Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation…

Read More »

Sunday, September 22, 2019

PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges andopportunities.

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored…

Read More »

Sunday, September 22, 2019

Emergence, retention and selection: A trilogy of origination for functional de novo proteins from ancestral lncRNAs in primates.

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age,…

Read More »

Sunday, September 22, 2019

Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0-1.

Pyrenophora teres f.teres, the causal agent of net form net blotch (NFNB) of barley, is a destructive pathogen in barley-growing regions throughout the world. Typical yield losses due to NFNB range from 10 to 40%; however, complete loss has been observed on highly susceptible barley lines where environmental conditions favor the pathogen. Currently, genomic resources for this economically important pathogen are limited to a fragmented draft genome assembly and annotation, with limited RNA support of theP. teresf.teresisolate 0-1. This research presents an updated 0-1 reference assembly facilitated by long-read sequencing and scaffolding with the assistance of genetic linkage maps. Additionally,…

Read More »

Sunday, September 22, 2019

Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics.

To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of…

Read More »

Sunday, September 22, 2019

The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body…

Read More »

Sunday, September 22, 2019

Tn6450, a novel multidrug resistance transposon characterized in a Proteus mirabilis isolate from chicken in China.

A novel 65.8-kb multidrug resistance transposon, designated Tn6450, was characterized in a Proteus mirabilis isolate from chicken in China. Tn6450 contains 18 different antimicrobial resistance genes, including cephalosporinase gene blaDHA-1 and fluoroquinolone resistance genes qnrA1 and aac(6′)-Ib-cr It carries a class 1/2 hybrid integron composed of intI2 and a 3′ conserved segment of the class 1 integron. Tn6450 is derived from Tn7 via acquisition of new mobile elements and resistance genes. Copyright © 2018 American Society for Microbiology.

Read More »

Sunday, September 22, 2019

Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat.

Parastagonospora nodorum, the causal agent of Septoria nodorum blotch in wheat, has emerged as a model necrotrophic fungal organism for the study of host-microbe interactions. To date, three necrotrophic effectors have been identified and characterized from this pathogen, including SnToxA, SnTox1, and SnTox3. Necrotrophic effector identification was greatly aided by the development of a draft genome of Australian isolate SN15 via Sanger sequencing, yet it remained largely fragmented. This research presents the development of nearly finished genomes of P. nodorum isolates Sn4, Sn2000, and Sn79-1087 using long-read sequencing technology. RNAseq analysis of isolate Sn4, consisting of eight time points covering…

Read More »

Sunday, September 22, 2019

De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust.

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for…

Read More »

Sunday, September 22, 2019

Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae

Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM…

Read More »

Sunday, September 22, 2019

Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae.

Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such…

Read More »

Sunday, September 22, 2019

Genetic basis of chromosomally-encoded mcr-1 gene.

Compared with plasmid-borne mcr-1, the occurrence of chromosomally-encoded mcr-1 is rare although it has been reported in several cases. This study aimed to investigate the genetic features of chromosomally-encoded mcr-1 among Escherichia coli strains as well as the potential genetic basis governing mobilisation of mcr-1 in bacterial chromosomes. The genome sequences of 16 E. coli strains containing a chromosomal mcr-1 gene were obtained and analysed. Phylogenetic and whole-genome sequencing (WGS) analysis demonstrated that mcr-1 was associated with four major types of genetic arrangements, namely ISApl1-mcr1-orf, Tn6330, complex Tn6330 and ?Tn6330 in chromosomes of genetically unrelated E. coli strains. The mcr-1-carrying…

Read More »

Sunday, September 22, 2019

Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity.

Pyrenophora tritici-repentis (Ptr) is a necrotrophic fungal pathogen that causes the major wheat disease, tan spot. We set out to provide essential genomics-based resources in order to better understand the pathogenicity mechanisms of this important pathogen.Here, we present eight new Ptr isolate genomes, assembled and annotated; representing races 1, 2 and 5, and a new race. We report a high quality Ptr reference genome, sequenced by PacBio technology with Illumina paired-end data support and optical mapping. An estimated 98% of the genome coverage was mapped to 10 chromosomal groups, using a two-enzyme hybrid approach. The final reference genome was 40.9 Mb…

Read More »

Sunday, September 22, 2019

Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host-pathogen genetic interactions.

Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives