Menu
April 21, 2020  |  

Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines.

Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome-level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole-genome shotgun (WGS) sequencing, PacBio sequencing, Illumina paired-end sequencing, 10X Genomics linked reads and high-throughput chromatin conformation capture (Hi-C) genome scaffolding techniques, a 141.01-Mb assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kb, respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach (CEGMA) and Benchmarking Universal Single-Copy Orthologs (BUSCO). A total of 11,882 genes were predicted using De novo, Homolog and RNAseq data generated from eggs, second-stage juveniles (J2), third-stage juveniles (J3) and fourth-stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high-quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN-plant interactions and coevolution, and also contribute to the development of technology for overall SCN management. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline

Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and allow for annotation of TEs. There are numerous methods for each class of elements with unknown relative performance metrics. We benchmarked existing programs based on a curated library of rice TEs. Using the most robust programs, we created a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a condensed TE library for annotations of structurally intact and fragmented elements. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.List of abbreviationsTETransposable ElementsLTRLong Terminal RepeatLINELong Interspersed Nuclear ElementSINEShort Interspersed Nuclear ElementMITEMiniature Inverted Transposable ElementTIRTerminal Inverted RepeatTSDTarget Site DuplicationTPTrue PositivesFPFalse PositivesTNTrue NegativeFNFalse NegativesGRFGeneric Repeat FinderEDTAExtensive de-novo TE Annotator


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Fast and accurate long-read assembly with wtdbg2

Existing long-read assemblers require tens of thousands of CPU hours to assemble a human genome and are being outpaced by sequencing technologies in terms of both throughput and cost. We developed a novel long-read assembler wtdbg2 that, for human data, is tens of times faster than published tools while achieving comparable contiguity and accuracy. It represents a significant algorithmic advance and paves the way for population-scale long-read assembly in future.


April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome.

Yellowhorn (Xanthoceras sorbifolium) is a species of the Sapindaceae family native to China and is an oil tree that can withstand cold and drought conditions. A pseudomolecule-level genome assembly for this species will not only contribute to understanding the evolution of its genes and chromosomes but also bring yellowhorn breeding into the genomic era.Here, we generated 15 pseudomolecules of yellowhorn chromosomes, on which 97.04% of scaffolds were anchored, using the combined Illumina HiSeq, Pacific Biosciences Sequel, and Hi-C technologies. The length of the final yellowhorn genome assembly was 504.2 Mb with a contig N50 size of 1.04 Mb and a scaffold N50 size of 32.17 Mb. Genome annotation revealed that 68.67% of the yellowhorn genome was composed of repetitive elements. Gene modelling predicted 24,672 protein-coding genes. By comparing orthologous genes, the divergence time of yellowhorn and its close sister species longan (Dimocarpus longan) was estimated at ~33.07 million years ago. Gene cluster and chromosome synteny analysis demonstrated that the yellowhorn genome shared a conserved genome structure with its ancestor in some chromosomes.This genome assembly represents a high-quality reference genome for yellowhorn. Integrated genome annotations provide a valuable dataset for genetic and molecular research in this species. We did not detect whole-genome duplication in the genome. The yellowhorn genome carries syntenic blocks from ancient chromosomes. These data sources will enable this genome to serve as an initial platform for breeding better yellowhorn cultivars. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation.

Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes.Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated.The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids. © The Author(s) 2018. Published by Oxford University Press.


April 21, 2020  |  

Genome assembly and annotation of the Trichoplusia ni Tni-FNL insect cell line enabled by long-read technologies.

Trichoplusiani derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusiani-derived cell line Tni-FNL.By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL.Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly.This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.


April 21, 2020  |  

Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus.

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


April 21, 2020  |  

A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.

In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.


April 21, 2020  |  

Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data.

Construction of chromosome-level assembly is a vital step in achieving the goal of a ‘Platinum’ genome, but it remains a major challenge to assemble and anchor sequences to chromosomes in autopolyploid or highly heterozygous genomes. High-throughput chromosome conformation capture (Hi-C) technology serves as a robust tool to dramatically advance chromosome scaffolding; however, existing approaches are mostly designed for diploid genomes and often with the aim of reconstructing a haploid representation, thereby having limited power to reconstruct chromosomes for autopolyploid genomes. We developed a novel algorithm (ALLHiC) that is capable of building allele-aware, chromosomal-scale assembly for autopolyploid genomes using Hi-C paired-end reads with innovative ‘prune’ and ‘optimize’ steps. Application on simulated data showed that ALLHiC can phase allelic contigs and substantially improve ordering and orientation when compared to other mainstream Hi-C assemblers. We applied ALLHiC on an autotetraploid and an autooctoploid sugar-cane genome and successfully constructed the phased chromosomal-level assemblies, revealing allelic variations present in these two genomes. The ALLHiC pipeline enables de novo chromosome-level assembly of autopolyploid genomes, separating each allele. Haplotype chromosome-level assembly of allopolyploid and heterozygous diploid genomes can be achieved using ALLHiC, overcoming obstacles in assembling complex genomes.


April 21, 2020  |  

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea.

Chalcidoidea (chalcidoid wasps) are an abundant and megadiverse insect group with both ecological and economical importance. Here we report a complete mitochondrial genome in Chalcidoidea from Pteromalus puparum (Pteromalidae). Eight tandem repeats followed by 6 reversed repeats were detected in its 3308?bp control region. This long and complex control region may explain failures of amplifying and sequencing of complete mitochondrial genomes in some chalcidoids. In addition to 37 typical mitochondrial genes, an extra identical isoleucine tRNA (trnI) was detected at the opposite end of the control region. This recent mitochondrial gene duplication indicates that gene arrangements in chalcidoids are ongoing. A comparison among available chalcidoid mitochondrial genomes reveals rapid gene order rearrangements overall and high protein substitution rates in most chalcidoid taxa. In addition, we identified 24 nuclear sequences of mitochondrial origin (NUMTs) in P. puparum, summing up to 9989?bp, with 3617?bp of these NUMTs originating from mitochondrial coding regions. NUMTs abundance in P. puparum is only one-twelfth of that in its relative, Nasonia vitripennis. Based on phylogenetic analysis, we provide evidence that a faster nuclear degradation rate contributes to the reduced NUMT numbers in P. puparum. Overall, our study shows unusually high rates of mitochondrial evolution and considerable variation in NUMT accumulation in Chalcidoidea. Copyright © 2018. Published by Elsevier B.V.


April 21, 2020  |  

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


April 21, 2020  |  

Assembly of long, error-prone reads using repeat graphs.

Accurate genome assembly is hampered by repetitive regions. Although long single molecule sequencing reads are better able to resolve genomic repeats than short-read data, most long-read assembly algorithms do not provide the repeat characterization necessary for producing optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates arbitrary paths in an unknown repeat graph, called disjointigs, and constructs an accurate repeat graph from these error-riddled disjointigs. We benchmark Flye against five state-of-the-art assemblers and show that it generates better or comparable assemblies, while being an order of magnitude faster. Flye nearly doubled the contiguity of the human genome assembly (as measured by the NGA50 assembly quality metric) compared with existing assemblers.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.