Menu
September 22, 2019  |  

Genome sequence of the brown rot fungal pathogen Monilinia fructigena.

Monilinia fructigena (phylum Ascomycota, family Sclerotiniaceae) is a plant pathogen that causes brown rot and blossom blight in pome fruit and stone fruit of the Rosaceae family, which can cause significant losses in the field and mainly postharvest. The aim of this study was to create a high-quality draft of the M. fructigena genome assembly and annotation that provides better understanding of the epidemiology of the pathogen and its interactions with the host(s) and will thus improve brown rot management.We report here on the genome sequence of M. fructigena strain Mfrg269 that was collected from plum in southern Italy. This is assembled into 131 scaffolds, with a total size of 43.125 Mb, with 9960 unique protein-coding genes. The novel genomic resources allow improved genomic comparisons among the most important pathogens belonging to the Monilinia genus, with the aim being to improve the knowledge of their plant-pathogen interactions, population biology, and control.


September 22, 2019  |  

Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus.

Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown.In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987-8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes.Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.


September 22, 2019  |  

Streptococcus suis contains multiple phase-variable methyltransferases that show a discrete lineage distribution.

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


September 22, 2019  |  

The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans.

Sweet osmanthus (Osmanthus fragrans) is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma. We constructed a chromosome-level reference genome of O. fragrans to assist in studies of the evolution, genetic diversity, and molecular mechanism of aroma development. A total of over 118?Gb of polished reads was produced from HiSeq (45.1?Gb) and PacBio Sequel (73.35?Gb), giving 100× depth coverage for long reads. The combination of Illumina-short reads, PacBio-long reads, and Hi-C data produced the final chromosome quality genome of O. fragrans with a genome size of 727?Mb and a heterozygosity of 1.45 %. The genome was annotated using de novo and homology comparison and further refined with transcriptome data. The genome of O. fragrans was predicted to have?45,542 genes, of which 95.68 % were functionally annotated. Genome annotation found 49.35 % as the repetitive sequences, with long terminal repeats (LTR) being the richest (28.94 %). Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago, which contributed to the current content of 45,242 genes. Metabolic analysis revealed that linalool, a monoterpene is the main aroma compound. Based on the genome and transcriptome, we further demonstrated the direct connection between terpene synthases (TPSs) and the rich aromatic molecules in O. fragrans. We identified three new flower-specific TPS genes, of which the expression coincided with the production of linalool. Our results suggest that the high number of TPS genes and the flower tissue- and stage-specific TPS genes expressions might drive the strong unique aroma production of O. fragrans.


September 22, 2019  |  

N6-methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome.

DNA N6-methyladenine (6mA) modifications expand the information capacity of DNA and have long been known to exist in bacterial genomes. Xanthomonas oryzae pv. Oryzicola (Xoc) is the causative agent of bacterial leaf streak, an emerging and destructive disease in rice worldwide. However, the genome-wide distribution patterns and potential functions of 6mA in Xoc are largely unknown. In this study, we analyzed the levels and global distribution patterns of 6mA modification in genomic DNA of seven Xoc strains (BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8 and RS105). The 6mA modification was found to be widely distributed across the seven Xoc genomes, accounting for percent of 3.80, 3.10, 3.70, 4.20, 3.40, 2.10, and 3.10 of the total adenines in BLS256, BLS279, CFBP2286, CFBP7331, CFBP7341, L8, and RS105, respectively. Notably, more than 82% of 6mA sites were located within gene bodies in all seven strains. Two specific motifs for 6?mA modification, ARGT and AVCG, were prevalent in all seven strains. Comparison of putative DNA methylation motifs from the seven strains reveals that Xoc have a specific DNA methylation system. Furthermore, the 6?mA modification of rpfC dramatically decreased during Xoc infection indicates the important role for Xoc adaption to environment.


September 22, 2019  |  

Achieving Accurate Sequence and Annotation Data for Caulobacter vibrioides CB13.

Annotated sequence data are instrumental in nearly all realms of biology. However, the advent of next-generation sequencing has rapidly facilitated an imbalance between accurate sequence data and accurate annotation data. To increase the annotation accuracy of the Caulobacter vibrioides CB13b1a (CB13) genome, we compared the PGAP and RAST annotations of the CB13 genome. A total of 64 unique genes were identified in the PGAP annotation that were either completely or partially absent in the RAST annotation, and a total of 16 genes were identified in the RAST annotation that were not included in the PGAP annotation. Moreover, PGAP identified 73 frameshifted genes and 22 genes with an internal stop. In contrast, RAST annotated the larger segment of these frameshifted genes without indicating a change in reading frame may have occurred. The RAST annotation did not include any genes with internal stop codons, since it chose start codons that were after the internal stop. To confirm the discrepancies between the two annotations and verify the accuracy of the CB13 genome sequence data, we re-sequenced and re-annotated the entire genome and obtained an identical sequence, except in a small number of homopolymer regions. A genome sequence comparison between the two versions allowed us to determine the correct number of bases in each homopolymer region, which eliminated frameshifts for 31 genes annotated as frameshifted genes and removed 24 pseudogenes from the PGAP annotation. Both annotation systems correctly identified genes that were missed by the other system. In addition, PGAP identified conserved gene fragments that represented the beginning of genes, but it employed no corrective method to adjust the reading frame of frameshifted genes or the start sites of genes harboring an internal stop codon. In doing so, the PGAP annotation identified a large number of pseudogenes, which may reflect evolutionary history but likely do not produce gene products. These results demonstrate that re-sequencing and annotation comparisons can be used to increase the accuracy of genomic data and the corresponding gene annotation.


September 22, 2019  |  

Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in Lindernia.

Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.© 2018 American Society of Plant Biologists. All rights reserved.


September 22, 2019  |  

Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species.

Candida auris is an emergent multidrug-resistant fungal pathogen causing increasing reports of outbreaks. While distantly related to C. albicans and C. glabrata, C. auris is closely related to rarely observed and often multidrug-resistant species from the C. haemulonii clade. Here, we analyze near complete genome assemblies for the four C. auris clades and three related species, and map intra- and inter-species rearrangements across the seven chromosomes. Using RNA-Seq-guided gene predictions, we find that most mating and meiosis genes are conserved and that clades contain either the MTLa or MTLa mating loci. Comparing the genomes of these emerging species to those of other Candida species identifies genes linked to drug resistance and virulence, including expanded families of transporters and lipases, as well as mutations and copy number variants in ERG11. Gene expression analysis identifies transporters and metabolic regulators specific to C. auris and those conserved with related species which may contribute to differences in drug response in this emerging fungal clade.


September 22, 2019  |  

Genome of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory.

The small hive beetle (Aethina tumida; ATUMI) is an invasive parasite of bee colonies. ATUMI feeds on both fruits and bee nest products, facilitating its spread and increasing its impact on honey bees and other pollinators. We have sequenced and annotated the ATUMI genome, providing the first genomic resources for this species and for the Nitidulidae, a beetle family that is closely related to the extraordinarily species-rich clade of beetles known as the Phytophaga. ATUMI thus provides a contrasting view as a neighbor for one of the most successful known animal groups.We present a robust genome assembly and a gene set possessing 97.5% of the core proteins known from the holometabolous insects. The ATUMI genome encodes fewer enzymes for plant digestion than the genomes of wood-feeding beetles but nonetheless shows signs of broad metabolic plasticity. Gustatory receptors are few in number compared to other beetles, especially receptors with known sensitivity (in other beetles) to bitter substances. In contrast, several gene families implicated in detoxification of insecticides and adaptation to diverse dietary resources show increased copy numbers. The presence and diversity of homologs involved in detoxification differ substantially from the bee hosts of ATUMI.Our results provide new insights into the genomic basis for local adaption and invasiveness in ATUMI and a blueprint for control strategies that target this pest without harming their honey bee hosts. A minimal set of gustatory receptors is consistent with the observation that, once a host colony is invaded, food resources are predictable. Unique detoxification pathways and pathway members can help identify which treatments might control this species even in the presence of honey bees, which are notoriously sensitive to pesticides.


September 22, 2019  |  

Genomic and genetic insights into a cosmopolitan fungus, Paecilomyces variotii (Eurotiales).

Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


September 21, 2019  |  

The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea.

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.© 2018, Deeg et al.


September 21, 2019  |  

Chromulinavorax destructans, a pathogenic TM6 bacterium with an unusual replication strategy targeting protist mitochondrion

Most of the diversity of microbial life is not available in culture, and as such we lack even a fundamental understanding of the biological diversity of several branches on the tree of life. One branch that is highly underrepresented is the candidate phylum TM6, also known as the Dependentiae. Their biology is known only from reduced genomes recovered from metagenomes around the world and two isolates infecting amoebae, all suggest that they live highly host-associated lifestyles as parasites or symbionts. Chromulinavorax destructans is an isolate from the TM6/Dependentiae that infects and lyses the abundant heterotrophic flagellate, Spumella elongata. Chromulinavorax destructans is characterized by a high degree of reduction and specialization for infection, so much so it was discovered in a screen for giant viruses. Its 1.2 Mb genome shows no metabolic potential and C. destructans instead relies on extensive transporter system to import nutrients, and even energy in the form of ATP from the host. Accordingly, it replicates in a viral-like fashion, while extensively reorganizing and expanding the host mitochondrion. 44% of proteins contain signal sequences for secretion, which includes many proteins of unknown function as well as 98 copies of ankyrin-repeat domain proteins, known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus.


September 21, 2019  |  

From the inside out: An epibiotic Bdellovibrio predator with an expanded genomic complement

Bdellovibrio and like organisms are abundant environmental predators of prokaryotes that show a diversity of predation strategies, ranging from intra-periplasmic to epibiotic predation. The novel epibiotic predator Bdellovibrio qaytius was isolated from a eutrophic freshwater pond in British Columbia, where it was a continual part of the microbial community. Bdellovibrio qaytius was found to preferentially prey on the beta-proteobacterium Paraburkholderia fungorum. Despite its epibiotic replication strategy, B. qaytius encodes a complex genomic complement more similar to periplasmic predators as well as several biosynthesis pathways not previously found in epibiotic predators. Bdellovibrio qaytius is representative of a widely distributed basal cluster within the genus Bdellovibrio, suggesting that epibiotic predation might be a common predation type in nature and ancestral to the genus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.