Menu
July 7, 2019

Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat

Bacterial leaf streak caused by Xanthomonas translucens pv. undulosa (Xtu) is an important disease of wheat (Triticum aestivum) and barley (Hordeum vulgare) worldwide. Transcription activator-like effectors (TALEs) play determinative roles in many of the plant diseases caused by the different species and pathovars of Xanthomonas, but their role in this disease has not been characterized. ICMP11055 is a highly virulent Xtu strain from Iran. The aim of this study was to better understand genetic diversity of Xtu and to assess the role of TALEs in bacterial leaf streak of wheat by comparing the genome of this strain to the recently completely sequenced genome of a U.S. Xtu strain, and to several other draft X. translucens genomes, and by carrying out mutational analyses of the TALE (tal) genes the Iranian strain might harbor. The ICMP11055 genome, including its repeat-rich tal genes, was completely sequenced using single molecule, real-time technology (Pacific Biosciences). It consists of a single circular chromosome of 4,561,583 bp, containing 3,953 genes. Whole genome alignment with the genome of the United States Xtu strain XT4699 showed two major re-arrangements, nine genomic regions unique to ICMP11055, and one region unique to XT4699. ICMP110055 harbors 26 non-TALE type III effector genes and seven tal genes, compared to 25 and eight for XT4699. The tal genes occur singly or in pairs across five scattered loci. Four are identical to tal genes in XT4699. In addition to common repeat-variable diresidues (RVDs), the tal genes of ICMP11055, like those of XT4699, encode several RVDs rarely observed in Xanthomonas, including KG, NF, Y*, YD, and YK. Insertion and deletion mutagenesis of ICMP11055 tal genes followed by genetic complementation analysis in wheat cv. Chinese Spring revealed that Tal2 and Tal4b of ICMP11055 each contribute individually to the extent of disease caused by this strain. A largely conserved ortholog of tal2 is present in XT4699, but for tal4b, only a gene with partial, fragmented RVD sequence similarity can be found. Our results lay the foundation for identification of important host genes activated by Xtu TALEs as targets for the development of disease resistant varieties.


July 7, 2019

Comparative sequence analysis of multidrug-resistant IncA/C plasmids from Salmonella enterica

Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in plasmids, advances in plasmid sequencing, and phylogenetic analyses, and important insights about how MDR evolution occurs across diverse serotypes from different animal sources, particularly in agricultural settings where antimicrobial drug use practices vary.


July 7, 2019

Complete genome sequence of Pseudoalteromonas piscicida strain DE2-B, a bacterium with broad inhibitory activity toward human and fish pathogens.

Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species, which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed multiple genes encoding proteases with potential antibacterial properties.


July 7, 2019

Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases.

Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here.


July 7, 2019

Extraction of high molecular weight DNA from fungal rust spores for long read sequencing.

Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.


July 7, 2019

Long-read sequencing offers path to more accurate drug metabolism profiles

In the complex drug discovery process, one of the looming questions for any new compound is how it will be metabolised in a human bodyWhi|e there are several methods for evaluating this, one of the most common involves CYP2D6,the enzyme encoded by the cytochrome P450—2D6 gene.This enzyme is involved in metabolising a quarter of all commonly used medications, making it an important target for ADME and pharmacogenomics studies. It is known to activate some drugs and to play a role in the deactivation or excretion of others.


July 7, 2019

The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.


July 7, 2019

Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant.

To analyse and compare mcr-1-bearing plasmids from animal Escherichia coli isolates, and to investigate potential mechanisms underlying dissemination of mcr-1.Ninety-seven ESBL-producing E. coli strains isolated from pig farms in China were screened for the mcr-1 gene. Fifteen mcr-1-positive strains were subjected to molecular characterization and bioinformatic analysis of the mcr-1-bearing plasmids that they harboured.Three major types of mcr-1-bearing plasmids were recovered: IncX4 (~33 kb), IncI2 (~60 kb) and IncHI2 (~216-280 kb), among which the IncX4 and IncI2 plasmids were found to harbour the mcr-1 gene only, whereas multiple resistance elements including blaCTX-M, blaCMY, blaTEM, fosA, qnrS, floR and oqxAB were detected, in various combinations, alongside mcr-1 in the IncHI2 plasmids. The profiles of mcr-1-bearing plasmids in the test strains were highly variable, with coexistence of two mcr-1-bearing plasmids being common. However, the MIC of colistin was not affected by the number of mcr-1-carrying plasmids harboured. Comparative analysis of the plasmids showed that they contained an mcr-1 gene cassette with varied structures (mcr-1-orf, ISApl1-mcr-1-orf and Tn6330), with the IncHI2 type being the most active in acquiring foreign resistance genes. A novel transposon, Tn6330, with the structure ISApl1-mcr-1-orf-ISApl1 was found to be the key element mediating translocation of mcr-1 into various plasmid backbones through formation of a circular intermediate.The mcr-1 gene can be disseminated via multiple mobile elements including Tn6330, its circular intermediate and plasmids harbouring such elements. It is often co-transmitted with other resistance determinants through IncHI2 plasmids. The functional mechanism of Tn6330, a typical composite transposon harbouring mcr-1, should be further investigated.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Complete genome sequence of Bacillus velezensis S3-1, a potential biological pesticide with plant pathogen inhibiting and plant promoting capabilities.

Antagonistic soil microorganisms, which are non-toxic, harmless non-pollutants, can effectively reduce the density of pathogenic species by some ways. Bacillus velezensis strain S3-1 was isolated from the rhizosphere soil of cucumber, and was shown to inhibit plant pathogens, promote plant growth and efficiently colonize rhizosphere soils. The strain produced 13 kinds of lipopeptide antibiotics, belonging to the surfactin, iturin and fengycin families. Here, we presented the complete genome sequence of S3-1. The genome consists of one chromosome without plasmids and also contains the biosynthetic gene cluster that encodes difficidin, macrolactin, surfactin and fengycin. The genome contains 86 tRNA genes, 27 rRNA genes and 57 antibiotic-related genes. The complete genome sequence of B. velezensis S3-1 provides useful information to further detect the molecular mechanisms behind antifungal actions, and will facilitate its potential as a biological pesticide in the agricultural industry. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Characterization of a PVL-negative community-acquired methicillin-resistant Staphylococcus aureus strain of sequence type 88 in China.

Sequence type 88 community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strain SR434, isolated from an outpatient with skin and soft tissue infection, was subjected to whole genome sequencing, antimicrobial susceptibility testing, mouse skin infection model and hemolysis analysis to identify its virulence and resistance determinants. MRSA strain SR434 is resistant to clindamycin, erythromycin and fosfomycin. Four plasmids with resistance genes were identified in this strain, including a 20,658bp blaZ-carrying plasmid, a 2473bp ermC-carrying plasmid, a 2622bp fosB7-carrying plasmid (86% identity with plasmid in a ST2590 MRSA strain) and a 4817bp lnuA-carrying plasmid (99% identity with pLNU4 from bovine coagulase-nagetive Staphylococci). This strain contains staphylococcal cassette chromosome mec type IV and does not contain arginine catabolic mobile element or Panton-Valentine-Leukocidin. SR434 harbors genomic islands ?Saa, ?Saß, ?Sa? and FSa3 and pathogenicity islands ?Sa2 that carries genes encoding toxic shock syndrome toxin 1, superantigen enterotoxin C and superantigen enterotoxin L. Mouse skin infection model results show that SR434 had similar virulence potential causing invasive skin infection as a PVL-negative epidemic Korea clone HL1 (ST72). CA-MRSA strain of ST88 lineage might be a great concern for its high virulence. PVL has limited contribution to virulence phenotype among this lineage. Copyright © 2017 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.