Menu
September 22, 2019  |  

Capturing a long look at our genetic library.

Long-read sequencing, coupled to cDNA capture, provides an unrivaled view of the transcriptome of chromosome 21, revealing surprises about the splicing of long noncoding RNAs. Copyright © 2018. Published by Elsevier Inc.


September 22, 2019  |  

Introduction to isoform sequencing using Pacific Biosciences technology (Iso-Seq)

Alternative RNA splicing is a known phenomenon, but we still do not have a complete catalog of isoforms that explain variability in the human transcriptome. We have made significant progress in developing methods to study variability of the transcriptome, but we are far away of having a complete picture of the transcriptome. The initial methods to study gene expression were based on cloning of cDNAs and Sanger sequencing. The strategy was labor-intensive and expensive. With the development of microarrays, different methods based on exon arrays and tiling arrays provided valuable information about RNA expression. However, the microarray presented significant limitations. Most of the limitations became apparent by 2005, but it was not until 2008 that an alternative method to study the transcriptome was developed. RNA Sequencing using next-generation sequencing (RNA-Seq) quickly became the technology of choice for gene expression profiling. Recently, the precision and sensitivity of RNA-Seq have come into question, especially for transcriptome reconstruction. This chapter will describe a relatively new method, “Isoform Sequencing (Iso-Seq). Iso-Seq was developed by Pacific Biosciences (PacBio), and it is capable of identifying new isoforms with extraordinary precision due to its long-read technology. The technique to create libraries is straightforward, and the PacBio RS II instrument generates the information in hours. The bioinformatics analysis is performed using the freely available SMRT® Portal software. The SMRT Portal is easy to use and capable of performing all the steps necessary to analyze the raw data and to generate high-quality full-length isoforms. For the universal acceptance of the Iso-Seq method, the capacity of the SMRT Cells needs to improve at least 10- to 100-fold to make the system affordable and attractive to users.


September 22, 2019  |  

Computational analysis of alternative splicing in plant genomes.

Computational analyses play crucial roles in characterizing splicing isoforms in plant genomes. In this review, we provide a survey of computational tools used in recently published, genome-scale splicing analyses in plants. We summarize the commonly used software and pipelines for read mapping, isoform reconstruction, isoform quantification, and differential expression analysis. We also discuss methods for analyzing long reads and the strategies to combine long and short reads in identifying splicing isoforms. We review several tools for characterizing local splicing events, splicing graphs, coding potential, and visualizing splicing isoforms. We further discuss the procedures for identifying conserved splicing isoforms across plant species. Finally, we discuss the outlook of integrating other genomic data with splicing analyses to identify regulatory mechanisms of AS on genome-wide scale. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing.In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells.Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.


September 22, 2019  |  

Hybrid error correction and de novo assembly of single-molecule sequencing reads.

Single-molecule sequencing instruments can generate multikilobase sequences with the potential to greatly improve genome and transcriptome assembly. However, the error rates of single-molecule reads are high, which has limited their use thus far to resequencing bacteria. To address this limitation, we introduce a correction algorithm and assembly strategy that uses short, high-fidelity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on reads generated by a PacBio RS instrument from phage, prokaryotic and eukaryotic whole genomes, including the previously unsequenced genome of the parrot Melopsittacus undulatus, as well as for RNA-Seq reads of the corn (Zea mays) transcriptome. Our long-read correction achieves >99.9% base-call accuracy, leading to substantially better assemblies than current sequencing strategies: in the best example, the median contig size was quintupled relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly.


September 22, 2019  |  

High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation.

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types. Copyright © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Hybrid sequencing of full-length cDNA transcripts of stems and leaves in Dendrobium officinale.

Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem.


September 22, 2019  |  

Identification of differentially expressed splice variants by the proteogenomic pipeline Splicify.

Proteogenomics, i.e. comprehensive integration of genomics and proteomics data, is a powerful approach identifying novel protein biomarkers. This is especially the case for proteins that differ structurally between disease and control conditions. As tumor development is associated with aberrant splicing, we focus on this rich source of cancer specific biomarkers. To this end, we developed a proteogenomic pipeline, Splicify, which is able to detect differentially expressed protein isoforms. Splicify is based on integrating RNA massive parallel sequencing data and tandem mass spectrometry proteomics data to identify protein isoforms resulting from differential splicing between two conditions. Proof of concept was obtained by applying Splicify to RNA sequencing and mass spectrometry data obtained from colorectal cancer cell line SW480, before and after siRNA-mediated down-modulation of the splicing factors SF3B1 and SRSF1. These analyses revealed 2172 and 149 differentially expressed isoforms, respectively, with peptide confirmation upon knock-down of SF3B1 and SRSF1 compared to their controls. Splice variants identified included RAC1, OSBPL3, MKI67 and SYK. One additional sample was analyzed by PacBio Iso-Seq full-length transcript sequencing after SF3B1 down-modulation. This analysis verified the alternative splicing identified by Splicify and in addition identified novel splicing events that were not represented in the human reference genome annotation. Therefore, Splicify offers a validated proteogenomic data analysis pipeline for identification of disease specific protein biomarkers resulting from mRNA alternative splicing. Splicify is publicly available on GitHub (https://github.com/NKI-TGO/SPLICIFY) and suitable to address basic research questions using pre-clinical model systems as well as translational research questions using patient-derived samples, e.g. allowing to identify clinically relevant biomarkers. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.


September 22, 2019  |  

Meeting report: processing, translation, decay – three ways to keep RNA sizzling.

This meeting report highlights key trends that emerged from a conference entitled Post-Transcriptional Gene Regulation in Plants, which was held 14-15 July 2016, as a satellite meeting of the annual meeting of the American Society of Plant Biologists in Austin, Texas. The molecular biology of RNA is emerging as an integral part of the framework for plants’ responses to environmental challenges such as drought and heat, hypoxia, nutrient deprivation, light and pathogens. Moreover, the conference illustrated how a multitude of customized and pioneering omics-related technologies are being applied, more and more often in combination, to describe and dissect the complexities of gene expression at the post-transcriptional level.© 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

HapIso: An accurate method for the haplotype-specific isoforms reconstruction from long single-molecule reads

Sequencing of RNA provides the possibility to study an individual’s transcriptome landscape and determine allelic expression ratios. Single-molecule protocols generate multi-kilobase reads longer than most transcripts allowing sequencing of complete haplotype isoforms. This allows partitioning the reads into two parental haplotypes. While the read length of the single-molecule protocols is long, the relatively high error rate limits the ability to accurately detect the genetic variants and assemble them into the haplotype-specific isoforms. In this paper, we present HapIso (Haplotype-specific Isoform Reconstruction), a method able to tolerate the relatively high error-rate of the single-molecule platform and partition the isoform reads into the parental alleles. Phasing the reads according to the allele of origin allows our method to efficiently distinguish between the read errors and the true biological mutations. HapIso uses a k-means clustering algorithm aiming to group the reads into two meaningful clusters maximizing the similarity of the reads within cluster and minimizing the similarity of the reads from different clusters. Each cluster corresponds to a parental haplotype. We use family pedigree information to evaluate our approach. Experimental validation suggests that HapIso is able to tolerate the relatively high error-rate and accurately partition the reads into the parental alleles of the isoform transcripts. Furthermore, our method is the first method able to reconstruct the haplotype-specific isoforms from long single-molecule reads. The open source Python implementation of HapIso is freely available for download at https://?github.?com/?smangul1/?HapIso/?.


September 22, 2019  |  

MCF-7 breast cancer cell line PacBio generated transcriptome has ~300 novel transcribed regions, un-annotated in both RefSeq and GENCODE, and absent in the liver, heart and brain transcriptomes

Illuminating the “dark” regions of the human genome remains an ongoing effort, a decade and a half after the human genome was sequenced – RefSeq and GENCODE being two of the major annotation databases. Pacific Biosciences (PacBio) has provided open access to the transcriptome of MCF-7, a breast cancer cell line that has provided significant therapeutic advancement in breast cancer research since the 1970s. PacBio sequencing generates much longer reads compared to second-generation sequencing technologies, with a trade-off of lower throughput, higher error rate and more cost per base. Here, this transcriptome was analyzed using the YeATS pipeline, with additionally introduced kmer based algorithms, reducing computational times to a few hours on a simple workstation. Out of ~300 transcripts that have no match in both RefSeq and GENCODE, ~250 are absent in the transcriptomes of the heart, liver and brain, also provided by PacBio. Also, ~200 transcripts are absent in a recent catalogue of un-annotated long non-coding RNAs from 6,503 samples (~43 Terabases of sequence data) [1], and only two present in common in an experimental workflow RACE-Seq that reported 2,556 novel transcripts [2]. ~100 transcripts have >100 amino acid open reading frames, and have the potential of being protein coding genes. ORF based annotation also identified few bacterial transcripts in the PacBio database mapped to the human genome, and one human transcript that has been annotated as bacterial in the NCBI database. The current work reiterates the under-utilization of transcriptomes for annotating genomes. It also provides new leads for investigating breast cancer by virtue of exclusively expressed transcripts not expressed in other tissues, which have the prospects of breast cancer biomarkers based on further investigations.


September 22, 2019  |  

Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation.

Species-specific, new, or “orphan” genes account for 10%-30% of eukaryotic genomes. Although initially considered to have limited function, an increasing number of orphan genes have been shown to provide important phenotypic innovation. How new genes acquire regulatory sequences for proper temporal and spatial expression is unknown. Orphan gene regulation may rely in part on origination in open chromatin adjacent to preexisting promoters, although this has not yet been assessed by genome-wide analysis of chromatin states. Here, we combine taxon-rich nematode phylogenies with Iso-Seq, RNA-seq, ChIP-seq, and ATAC-seq to identify the gene structure and epigenetic signature of orphan genes in the satellite model nematode Pristionchus pacificus Consistent with previous findings, we find young genes are shorter, contain fewer exons, and are on average less strongly expressed than older genes. However, the subset of orphan genes that are expressed exhibit distinct chromatin states from similarly expressed conserved genes. Orphan gene transcription is determined by a lack of repressive histone modifications, confirming long-held hypotheses that open chromatin is important for new gene formation. Yet orphan gene start sites more closely resemble enhancers defined by H3K4me1, H3K27ac, and ATAC-seq peaks, in contrast to conserved genes that exhibit traditional promoters defined by H3K4me3 and H3K27ac. Although the majority of orphan genes are located on chromosome arms that contain high recombination rates and repressive histone marks, strongly expressed orphan genes are more randomly distributed. Our results support a model of new gene origination by rare integration into open chromatin near enhancers.© 2018 Werner et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing.

Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1?, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.


September 22, 2019  |  

Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina-and SMRT-based RNA-seq datasets

The genome of the wild diploid strawberry species Fragaria vesca, an ideal model system of cultivated strawberry (Fragaria × ananassa, octoploid) and other Rosaceae family crops, was first published in 2011 and followed by a new assembly (Fvb). However, the annotation for Fvb mainly relied on ab initio predictions and included only predicted coding sequences, therefore an improved annotation is highly desirable. Here, a new annotation version named v2.0.a2 was created for the Fvb genome by a pipeline utilizing one PacBio library, 90 Illumina RNA-seq libraries, and 9 small RNA-seq libraries. Altogether, 18,641 genes (55.6% out of 33,538 genes) were augmented with information on the 5′ and/or 3′ UTRs, 13,168 (39.3%) protein-coding genes were modified or newly identified, and 7,370 genes were found to possess alternative isoforms. In addition, 1,938 long non-coding RNAs, 171 miRNAs, and 51,714 small RNA clusters were integrated into the annotation. This new annotation of F. vesca is substantially improved in both accuracy and integrity of gene predictions, beneficial to the gene functional studies in strawberry and to the comparative genomic analysis of other horticultural crops in Rosaceae family.


September 22, 2019  |  

Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing.

Neurexins are evolutionarily conserved presynaptic cell-adhesion molecules that are essential for normal synapse formation and synaptic transmission. Indirect evidence has indicated that extensive alternative splicing of neurexin mRNAs may produce hundreds if not thousands of neurexin isoforms, but no direct evidence for such diversity has been available. Here we use unbiased long-read sequencing of full-length neurexin (Nrxn)1a, Nrxn1ß, Nrxn2ß, Nrxn3a, and Nrxn3ß mRNAs to systematically assess how many sites of alternative splicing are used in neurexins with a significant frequency, and whether alternative splicing events at these sites are independent of each other. In sequencing more than 25,000 full-length mRNAs, we identified a novel, abundantly used alternatively spliced exon of Nrxn1a and Nrxn3a (referred to as alternatively spliced sequence 6) that encodes a 9-residue insertion in the flexible hinge region between the fifth LNS (laminin-a, neurexin, sex hormone-binding globulin) domain and the third EGF-like sequence. In addition, we observed several larger-scale events of alternative splicing that deleted multiple domains and were much less frequent than the canonical six sites of alternative splicing in neurexins. All of the six canonical events of alternative splicing appear to be independent of each other, suggesting that neurexins may exhibit an even larger isoform diversity than previously envisioned and comprise thousands of variants. Our data are consistent with the notion that a-neurexins represent extracellular protein-interaction scaffolds in which different LNS and EGF domains mediate distinct interactions that affect diverse functions and are independently regulated by independent events of alternative splicing.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.