June 1, 2021  |  

An interactive workflow for the analysis of contigs from the metagenomic shotgun assembly of SMRT Sequencing data.

The data throughput of next-generation sequencing allows whole microbial communities to be analyzed using a shotgun sequencing approach. Because a key task in taking advantage of these data is the ability to cluster reads that belong to the same member in a community, single-molecule long reads of up to 30 kb from SMRT Sequencing provide a unique capability in identifying those relationships and pave the way towards finished assemblies of community members. Long reads become even more valuable as samples get more complex with lower intra-species variation, a larger number of closely related species, or high intra-species variation. Here we present a collection of tools tailored for PacBio data for the analysis of these fragmented metagenomic assembles, allowing improvements in the assembly results, and greater insight into the communities themselves. Supervised classification is applied to a large set of sequence characteristics, e.g., GC content, raw-read coverage, k-mer frequency, and gene prediction information, allowing the clustering of contigs from single or highly related species. A unique feature of SMRT Sequencing data is the availability of base modification / methylation information, which can be used to further analyze clustered contigs expected to be comprised of single or very closely related species. Here we show base modification information can be used to further study variation, based on differences in the methylated DNA motifs involved in the restriction modification system. Application of these techniques is demonstrated on a monkey intestinal microbiome sample and an in silico mix of real sequencing data from distinct bacterial samples.


June 1, 2021  |  

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a microbial community. The epigenetic approach is a novel validation method unique to SMRT Sequencing. In addition to whole-genome shotgun sequencing, SMRT Sequencing also offers improved classification resolution and reliability of metagenomic and microbiome samples by the full-length sequencing of 16S rRNA (~1500 bases long). Microbial communities can be detected at the species level in some cases, rather than being limited to the genus taxonomic classification as constrained by short-read technologies. The performance of SMRT Sequencing for these metagenomic samples achieved >99% predicted concordance to reference sequences in cecum, soil, water, and mock control investigations for bacterial 16S. Community samples are estimated to contain from 2.3 and up to 15 times as many species with abundance levels as low as 0.05% compared to the identification of phyla groups.


June 1, 2021  |  

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences about evolutionary strategies that are otherwise missed by the coverage biases associated with short- read sequencing technologies. Additional benefits afforded by SMRT Sequencing include the simultaneous capability to detect epigenomic modifications and obtain full-length cDNA transcripts that obsolete the need for assembly. With direct sequencing of DNA in real-time, this has resulted in the identification of numerous base modifications and motifs, which genome-wide profiles have linked to specific methyltransferase activities. Our new offering, the Iso-Seq Application, allows for the accurate differentiation between transcript isoforms that are difficult to resolve with short-read technologies. PacBio reads easily span transcripts such that both 5’/3’ primers for cDNA library generation and the poly-A tail are observed. As such, exon configuration and intron retention events can be analyzed without ambiguity. This technological advance is useful for characterizing transcript diversity and improving gene structure annotations in reference genomes. We review solutions available with SMRT Sequencing, from targeted sequencing efforts to obtaining reference genomes (>100 Mb). This includes strategies for identifying microsatellites and conducting phylogenetic comparisons with targeted gene families. We highlight how to best leverage our long reads that have exceeded 20 kb in length for research investigations, as well as currently available bioinformatics strategies for analysis. Benefits for these applications are further realized with consistent use of size selection of input sample using the BluePippin™ device from Sage Science as demonstrated in our genome improvement projects. Using the latest P5-C3 chemistry on model organisms, these efforts have yielded an observed contig N50 of ~6 Mb, with the longest contig exceeding 12.5 Mb and an average base quality of QV50.


June 1, 2021  |  

Long Amplicon Analysis: Highly accurate, full-length, phased, allele-resolved gene sequences from multiplexed SMRT Sequencing data.

The correct phasing of genetic variations is a key challenge for many applications of DNA sequencing. Allele-level resolution is strongly preferred for histocompatibility sequencing where recombined genes can exhibit different compatibilities than their parents. In other contexts, gene complementation can provide protection if deleterious mutations are found on only one allele of a gene. These problems are especially pronounced in immunological domains given the high levels of genetic diversity and recombination seen in regions like the Major Histocompatibility Complex. A new tool for analyzing Single Molecule, Real-Time (SMRT) Sequencing data – Long Amplicon Analysis (LAA) – can generate highly accurate, phased and full-length consensus sequences for multiple genes in a single sequencing run.


June 1, 2021  |  

Data release for polymorphic genome assembly algorithm development.

Heterozygous and highly polymorphic diploid (2n) and higher polyploidy (n > 2) genomes have proven to be very difficult to assemble. One key to the successful assembly and phasing of polymorphic genomics is the very long read length (9-40 kb) provided by the PacBio RS II system. We recently released software and methods that facilitate the assembly and phasing of genomes with ploidy levels equal to or greater than 2n. In an effort to collaborate and spur on algorithm development for assembly and phasing of heterozygous polymorphic genomes, we have recently released sequencing datasets that can be used to test and develop highly polymorphic diploid and polyploidy assembly and phasing algorithms. These data sets include multiple species and ecotypes of Arabidopsis that can be combined to create synthetic in-silico F1 hybrids with varying levels of heterozygosity. Because the sequence of each individual line was generated independently, the data set provides a ‘ground truth’ answer for the expected results allowing the evaluation of assembly algorithms. The sequencing data, assembly of inbred and in-silico heterozygous samples (n=>2) and phasing statistics will be presented. The raw and processed data has been made available to aid other groups in the development of phasing and assembly algorithms.


June 1, 2021  |  

Old school/new school genome sequencing: One step backward — a quantum leap forward.

As the costs for genome sequencing have decreased the number of “genome” sequences have increased at a rapid pace. Unfortunately, the quality and completeness of these so–called “genome” sequences have suffered enormously. We prefer to call such genome assemblies as “gene assembly space” (GAS). We believe it is important to distinguish GAS assemblies from reference genome assemblies (RGAs) as all subsequent research that depends on accurate genome assemblies can be highly compromised if the only assembly available is a GAS assembly.


June 1, 2021  |  

A workflow for the analysis of contigs from the metagenomic shotgun assembly of SMRT Sequencing data

The throughput of SMRT Sequencing and long reads allows microbial communities to be analyzed using a shotgun sequencing approach. Key to leveraging this data is the ability to cluster sequences belonging to the same member of a community. Long reads of up to 40 kb provide a unique capability in identifying those relationships, and pave the way towards finished assemblies of community members. Long reads are highly valuable when samples are more complex and containing lower intra-species variation, such as a larger number of closely related species, or high intra-species variation. Here, we present a collection of tools tailored for the analysis of PacBio metagenomic assemblies. These tools allow for improvements in the assembly results, and greater insight into the complexity of the study communities. Supervised classification is applied to a large set of sequence characteristics (e.g. GC content, raw read coverage, k-mer frequency, and gene prediction information) and to cluster contigs from single or highly related species. Assembly in isolation of the raw data associated with these contigs is shown to improve assembly statistics. A unique feature of SMRT Sequencing is the availability to leverage simultaneously collected base modification / methylation data to aid the clustering of contigs expected to comprise a single or very closely related species. We demonstrate the added value of base modification information to distinguish and study variation within metagenomic samples based on differences in the methylated DNA motifs involved in the restriction modification system. Application of these techniques is demonstrated on a mock community and monkey intestinal microbiome sample.


June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Sequencing complex mixtures of HIV-1 genomes with single-base resolution.

A large number of distinct HIV-1 genomes can be present in a single clinical sample from a patient chronically infected with HIV-1. We examined samples containing complex mixtures of near-full-length HIV-1 genomes. Single molecules were sequenced as near-full-length (9.6 kb) amplicons directly from PCR products without shearing. Mathematical analysis techniques deconvolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. We correctly estimated the originating genomes to single-base resolution along with their relative abundances for mixtures where the truth was known exactly by independent sequencing methods. Correct estimates were made even when genomes diverged by a single base. Minor abundances of 5% were reliably detected. SMRT Sequencing data contained near-full-length continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour collection time. SMRT Sequencing yields long- read sequencing results from individual DNA molecules with a rapid time-to-result. The single-molecule, full-length nature of the sequencing method allows us to estimate variant subspecies and relative abundances even from samples containing complex mixtures of genomes that differ by single bases. These results open the possibility of cost-effective full-genome sequencing of HIV-1 in mixed populations for applications such as incorporated-HIV-1 screening. In screening, genomes can differ by one to many thousands of bases and the ability to measure them can help scientifically inform treatment strategies.


June 1, 2021  |  

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods: We generated clonal near-full-length (~9 kb) amplicons derived from single genome amplification (SGA) of primary proviral isolates or PCR of well-documented control strains. These clonal products were mixed at various abundances and sequenced as near-full-length (~9 kb) amplicons without shearing. Each mixture yielded many near-full-length HIV-1 reads. Mathematical analysis techniques resolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. Results: Single Molecule, Real-Time (SMRT) Sequencing data contained near-full-length (~9 kb) continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour sequencing run. Our methods correctly recapitulated exactly the originating genomes at a single-base resolution and their relative abundances in both mixtures of clonal controls and SGAs, and these results were validated using independent sequencing methods. Correct resolution was achieved even when genomes differed only by a single base. Minor abundances of 5% were reliably detected. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules, a rapid time-to-result. The single-molecule, full-length nature of this sequencing method allows us to estimate variant subspecies and relative abundances with single-nucleotide resolution. This method allows for reference-agnostic and cost-effective full-genome sequencing of HIV-1, which could both further our understanding of latent infection and develop novel and improved tools for quantifying HIV provirus, which will be critical to cure HIV.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.