Menu
September 22, 2019  |  

Recurrent loss, horizontal transfer, and the obscure origins of mitochondrial introns in diatoms (Bacillariophyta).

We sequenced mitochondrial genomes from five diverse diatoms (Toxarium undulatum, Psammoneis japonica, Eunotia naegelii, Cylindrotheca closterium, and Nitzschia sp.), chosen to fill important phylogenetic gaps and help us characterize broadscale patterns of mitochondrial genome evolution in diatoms. Although gene content was strongly conserved, intron content varied widely across species. The vast majority of introns were of group II type and were located in the cox1 or rnl genes. Although recurrent intron loss appears to be the principal underlying cause of the sporadic distributions of mitochondrial introns across diatoms, phylogenetic analyses showed that intron distributions superficially consistent with a recurrent-loss model were sometimes more complicated, implicating horizontal transfer as a likely mechanism of intron acquisition as well. It was not clear, however, whether diatoms were the donors or recipients of horizontally transferred introns, highlighting a general challenge in resolving the evolutionary histories of many diatom mitochondrial introns. Although some of these histories may become clearer as more genomes are sampled, high rates of intron loss suggest that the origins of many diatom mitochondrial introns are likely to remain unclear.


September 22, 2019  |  

Three substrains of the cyanobacterium Anabaena sp. PCC 7120 display divergence in genomic sequences and hetC function.

Anabaena sp. strain PCC 7120 is a model strain for molecular studies of cell differentiation and patterning in heterocyst-forming cyanobacteria. Subtle differences in heterocyst development have been noticed in different laboratories working on the same organism. In this study, 360 mutations, including single nucleotide polymorphisms (SNPs), small insertion/deletions (indels; 1 to 3 bp), fragment deletions, and transpositions, were identified in the genomes of three substrains. Heterogeneous/heterozygous bases were also identified due to the polyploidy nature of the genome and the multicellular morphology but could be completely segregated when plated after filament fragmentation by sonication. hetC is a gene upregulated in developing cells during heterocyst formation in Anabaena sp. strain PCC 7120 and found in approximately half of other heterocyst-forming cyanobacteria. Inactivation of hetC in 3 substrains of Anabaena sp. PCC 7120 led to different phenotypes: the formation of heterocysts, differentiating cells that keep dividing, or the presence of both heterocysts and dividing differentiating cells. The expression of P hetZ -gfp in these hetC mutants also showed different patterns of green fluorescent protein (GFP) fluorescence. Thus, the function of hetC is influenced by the genomic background and epistasis and constitutes an example of evolution under way.IMPORTANCE Our knowledge about the molecular genetics of heterocyst formation, an important cell differentiation process for global N2 fixation, is mostly based on studies with Anabaena sp. strain PCC 7120. Here, we show that rapid microevolution is under way in this strain, leading to phenotypic variations for certain genes related to heterocyst development, such as hetC This study provides an example for ongoing microevolution, marked by multiple heterogeneous/heterozygous single nucleotide polymorphisms (SNPs), in a multicellular multicopy-genome microorganism. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing.

N6-Methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes; however, methods for high-resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single-nucleotide and single-molecule resolution. For human lymphoblastoid cells (hLCLs), it was necessary to integrate SMRT sequencing data with independent sequencing data. The joint analyses suggest putative m6dA events are enriched in the promoters of young full-length LINE-1 elements (L1s), but call for validation by additional methods. These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes.© 2018 Zhu et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments.

Anaerobic strains affiliated with a novel order-level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome-assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis

Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs?=?210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants are actively transcribed. Observed rDNA/rRNA polymorphisms may modulate translation by using different ribosomes depending on biotic and abiotic interactions. The non-tandem repeat structure and intragenomic heterogeneity of AMF rDNA/rRNA may facilitate successful adaptation to various environmental conditions, increasing host compatibility of these symbiotic fungi.


September 22, 2019  |  

Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance.

Resurrection plants, which are the “gifts” of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies.

Robust molecular tool kits in model and industrial microalgae are key to efficient targeted manipulation of endogenous and foreign genes in the nuclear genome for basic research and, as importantly, for the development of algal strains to produce renewable products such as biofuels. While Cas9-mediated gene knockout has been demonstrated in a small number of algal species with varying efficiency, the ability to stack traits or generate knockout mutations in two or more loci are often severely limited by selectable agent availability. This poses a critical hurdle in developing production strains, which require stacking of multiple traits, or in probing functionally redundant gene families. Here, we combine Cas9 genome editing with an inducible Cre recombinase in the industrial alga Nannochloropsis gaditana to generate a strain, NgCas9+Cre+, in which the potentially unlimited stacking of knockouts and addition of new genes is readily achievable. Cre-mediated marker recycling is first demonstrated in the removal of the selectable marker and GFP reporter transgenes associated with the Cas9/Cre construct in NgCas9+Cre+ Next, we show the proof-of-concept generation of a markerless knockout in a gene encoding an acyl-CoA oxidase (Aco1), as well as the markerless recapitulation of a 2-kb insert in the ZnCys gene 5′-UTR, which results in a doubling of wild-type lipid productivity. Finally, through an industrially oriented process, we generate mutants that exhibit up to ~50% reduction in photosynthetic antennae size by markerless knockout of seven genes in the large light-harvesting complex gene family. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Genetic adaptation of a mevalonate pathway deficient mutant in Staphylococcus aureus.

In this study we addressed the question how a mevalonate (MVA)-auxotrophic Staphylococcus aureus?mvaS mutant can revert to prototrophy. This mutant couldn’t grow in the absence of MVA. However, after a long lag-phase of 4-6 days the mutant adapted from auxotrophic to prototrophic phenotype. During that time, it acquired two point mutations: One mutation in the coding region of the regulator gene spx, which resulted in an amino acid exchange that decreased Spx function. The other mutation in the upstream-element within the core-promoter of the mevalonolactone lactonase gene drp35. This mutation led to an increased expression of drp35. In repeated experiments the mutations always occurred in spx and drp35 and in the same order. The first detectable mutation appeared in spx and allowed slight growth; the second mutation, in drp35, increased growth further. Phenotypical characterizations of the mutant showed that small amounts of the lipid-carrier undecaprenol are synthesized, despite the lack of mvaS. The growth of the adapted clone, ?mvaSad, indicates that the mutations reawake a rescue bypass. We think that this bypass enters the MVA pathway at the stage of MVA, because blocking the pathway downstream of MVA led to growth arrest of the mutant. In addition, the lactonase Drp35 is able to convert mevalonolactone to MVA. Summarized, we describe here a mutation-based two-step adaptation process that allows resuscitation of growth of the ?mvaS mutant.


September 22, 2019  |  

The Chara genome: Secondary complexity and implications for plant terrestrialization.

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genomics of Pseudomonas sp. strain SI-3 associated with macroalga Ulva prolifera, the causative species for green tide in the Yellow Sea.

Algae-bacteria associations occurred widely in marine habitats, however, contributions of bacteria to macroalgal blooming were almost unknown. In this study, a potential endophytic strain SI-3 was isolated from Ulva prolifera, the causative species for the world’s largest green tide in the Yellow Sea, following a strict bleaching treatment to eliminate epiphytes. The genomic sequence of SI-3 was determined in size of 4.8 Mb and SI-3 was found to be mostly closed to Pseudomonas stutzeri. To evaluate the characteristics of SI-3 as a potential endophyte, the genomes of SI-3 and other 20 P. stutzeri strains were compared. We found that SI-3 had more strain-specific genes than most of the 20 P. stutzeri strains. Clusters of Orthologous Groups (COGs) analysis revealed that SI-3 had a higher proportion of genes assigned to transcriptional regulation and signal transduction compared with the 20 P. stutzeri strains, including four rhizosphere bacteria, indicating a complicated interaction network between SI-3 and its host. P. stutzeri is renowned for its metabolic versatility in aromatic compounds degradation. However, significant gene loss was observed in several aromatic compounds degradation pathways in SI-3, which may be an evolutional adaptation that developed upon association with its host. KEGG analysis revealed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, two competing dissimilatory nitrate reduction pathways, co-occurred in the genome of SI-3, like most of the other 20 P. stutzeri strains. We speculated that DNRA of SI-3 may contribute a competitive advantage in nitrogen acquisition of U. prolifera by conserving nitrogen in NH4+ form, as in the case of microalgae bloom. Collectively, these data suggest that Pseudomonas sp. strain SI-3 was a suitable candidate for investigation of the algae-bacteria interaction with U. prolifera and the ecological impacts on algal blooming.


September 22, 2019  |  

Quorum-quenching bacteria isolated from Red Sea sediments reduce biofilm formation by Pseudomonas aeruginosa.

Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules such as N-acylhomoserine lactones (AHLs). Certain bacteria can degrade AHL molecules by a process called quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activity. Red Sea sediments were collected either from the close vicinity of seagrass or from areas with no vegetation. We isolated 72 bacterial strains, which were tested for their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum CV026-based bioassay was used for the initial screening of isolates with QQ activity. QQ activity was further quantified using high-performance liquid chromatography-tandem mass spectrometry. We found that these isolates could degrade AHL molecules of different acyl chain lengths as well as modifications. 16S-rRNA sequencing of positive QQ isolates showed that they belonged to three different genera. Specifically, two isolates belonged to the genus Erythrobacter; four, Labrenzia; and one, Bacterioplanes. The genome of one representative isolate from each genus was sequenced, and potential QQ enzymes, namely, lactonases and acylases, were identified. The ability of these isolates to degrade the 3OXOC12-AHLs produced by Pseudomonas aeruginosa PAO1 and hence inhibit biofilm formation was investigated. Our results showed that the isolate VG12 (genus Labrenzia) is better than other isolates at controlling biofilm formation by PAO1 and degradation of different AHL molecules. Time-course experiments to study AHL degradation showed that VG1 (genus Erythrobacter) could degrade AHLs faster than other isolates. Thus, QQ bacteria or enzymes can be used in combination with an antibacterial to overcome antibiotic resistance.


September 22, 2019  |  

Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta.

Red algae (Rhodophyta) underwent two phases of large-scale genome reduction during their early evolution. The red seaweeds did not attain genome sizes or gene inventories typical of other multicellular eukaryotes. We generated a high-quality 92.1 Mb draft genome assembly from the red seaweed Gracilariopsis chorda, including methylation and small (s)RNA data. We analyzed these and other Archaeplastida genomes to address three questions: 1) What is the role of repeats and transposable elements (TEs) in explaining Rhodophyta genome size variation, 2) what is the history of genome duplication and gene family expansion/reduction in these taxa, and 3) is there evidence for TE suppression in red algae? We find that the number of predicted genes in red algae is relatively small (4,803-13,125 genes), particularly when compared with land plants, with no evidence of polyploidization. Genome size variation is primarily explained by TE expansion with the red seaweeds having the largest genomes. Long terminal repeat elements and DNA repeats are the major contributors to genome size growth. About 8.3% of the G. chorda genome undergoes cytosine methylation among gene bodies, promoters, and TEs, and 71.5% of TEs contain methylated-DNA with 57% of these regions associated with sRNAs. These latter results suggest a role for TE-associated sRNAs in RNA-dependent DNA methylation to facilitate silencing. We postulate that the evolution of genome size in red algae is the result of the combined action of TE spread and the concomitant emergence of its epigenetic suppression, together with other important factors such as changes in population size.


September 22, 2019  |  

Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments.

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms’ use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses.

One of the well-known floral abnormalities in flowering plants is the double-flower phenotype, which corresponds to flowers that develop extra petals, sometimes even containing entire flowers within flowers. Because of their highly priced ornamental value, spontaneous double-flower variants have been found and selected for in a wide range of ornamental species. Previously, double flower formation in roses was associated with a restriction of AGAMOUS expression domain toward the centre of the meristem, leading to extra petals. Here, we characterized the genomic region containing the mutation associated with the switch from simple to double flowers in the rose. An APETALA2-like gene (RcAP2L), a member of the Target Of EAT-type (TOE-type) subfamily, lies within this interval. In the double flower rose, two alleles of RcAP2L are present, one of which harbours a transposable element inserted into intron 8. This insertion leads to the creation of a miR172 resistant RcAP2L variant. Analyses of the presence of this variant in a set of simple and double flower roses demonstrate a correlation between the presence of this allele and the double flower phenotype. These data suggest a role of this miR172 resistant RcAP2L variant in regulating RcAGAMOUS expression and double flower formation in Rosa sp.


September 22, 2019  |  

Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle.

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105?=?JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G?+?C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.