Menu
October 23, 2019  |  

Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity.

Existing recombinant adeno-associated virus (rAAV) serotypes for delivering in vivo gene therapy treatments for human liver diseases have not yielded combined high-level human hepatocyte transduction and favorable humoral neutralization properties in diverse patient groups. Yet, these combined properties are important for therapeutic efficacy. To bioengineer capsids that exhibit both unique seroreactivity profiles and functionally transduce human hepatocytes at therapeutically relevant levels, we performed multiplexed sequential directed evolution screens using diverse capsid libraries in both primary human hepatocytes in vivo and with pooled human sera from thousands of patients. AAV libraries were subjected to five rounds of in vivo selection in xenografted mice with human livers to isolate an enriched human-hepatotropic library that was then used as input for a sequential on-bead screen against pooled human immunoglobulins. Evolved variants were vectorized and validated against existing hepatotropic serotypes. Two of the evolved AAV serotypes, NP40 and NP59, exhibited dramatically improved functional human hepatocyte transduction in vivo in xenografted mice with human livers, along with favorable human seroreactivity profiles, compared with existing serotypes. These novel capsids represent enhanced vector delivery systems for future human liver gene therapy applications. Copyright © 2017. Published by Elsevier Inc.


October 23, 2019  |  

Adeno-associated virus genome population sequencing achieves full vector genome resolution and reveals human-vector chimeras

Recombinant adeno-associated virus (rAAV)-based gene therapy has entered a phase of clinical translation and commercialization. Despite this progress, vector integrity following production is often overlooked. Compromised vectors may negatively impact therapeutic efficacy and safety. Using single molecule, real-time (SMRT) sequencing, we can comprehensively profile packaged genomes as a single intact molecule and directly assess vector integrity without extensive preparation. We have exploited this methodology to profile all heterogeneic populations of self-complementary AAV genomes via bioinformatics pipelines and have coined this approach AAV-genome population sequencing (AAV-GPseq). The approach can reveal the relative distribution of truncated genomes versus full-length genomes in vector preparations. Preparations that seemingly show high genome homogeneity by gel electrophoresis are revealed to consist of less than 50% full-length species. With AAV-GPseq, we can also detect many reverse-packaged genomes that encompass sequences originating from plasmid backbone, as well as sequences from packaging and helper plasmids. Finally, we detect host-cell genomic sequences that are chimeric with inverted terminal repeat (ITR)-containing vector sequences. We show that vector populations can contain between 1.3% and 2.3% of this type of undesirable genome. These discoveries redefine quality control standards for viral vector preparations and highlight the degree of foreign products in rAAV-based therapeutic vectors.


October 23, 2019  |  

Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice.

We report a genome-editing strategy to correct compound heterozygous mutations, a common genotype in patients with recessive genetic disorders. Adeno-associated viral vector delivery of Cas9 and guide RNA induces allelic exchange and rescues the disease phenotype in mouse models of hereditary tyrosinemia type I and mucopolysaccharidosis type I. This approach recombines non-mutated genetic information present in two heterozygous alleles into one functional allele without using donor DNA templates.


September 22, 2019  |  

The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest,Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families revealT. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, andT. nisiRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. TheT. nigenome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo.© 2018, Fu et al.


September 22, 2019  |  

The sequence of the salamander.

The genome of the aquatic axolotl salamander, a native of Mexico’s lakes, has yielded some surprises, and the technique used could point the way to analysis of other organisms that have complex genomes with large numbers of sequence repeats, such as the lungfish and many species of plants.


September 22, 2019  |  

Autologous cell therapy approach for Duchenne muscular dystrophy using PiggyBac transposons and mesoangioblasts.

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.