Menu
April 21, 2020  |  

A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang.

The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (?pglX) was constructed. Interestingly, m6A methylation of the 5′-ACRCAG-3′ motif was eliminated in the ?pglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ?pglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5′-ACRCAG-3′). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ?pglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCELactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria. Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


April 21, 2020  |  

Transposable Elements Adaptive Role in Genome Plasticity, Pathogenicity and Evolution in Fungal Phytopathogens.

Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs’ contribution to genome architecture and versatility.


April 21, 2020  |  

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020  |  

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.Copyright © 2019 Mahérault et al.


April 21, 2020  |  

Whole Genome Sequencing of the Giant Grouper (Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes.

Giant groupers, the largest grouper type in the world, are of economic importance in marine aquaculture for their rapid growth. At the same time, bacterial and viral diseases have become the main threats to the grouper industry. Here, we report a high-quality genome of a giant grouper sequenced by an Illumina HiSeq X-Ten and PacBio Bioscience Sequel platform. A total of 254 putative antimicrobial peptide (AMP) genes were identified, which can be divided into 34 classes according to the annotation of the Antimicrobial Peptides Database (APD3). Their locations in pseudochromosomes were also determined. Thrombin-, lectin-, and scolopendin-derived putative AMPs were the three largest parts. In addition, expressions of putative AMPs were measured by our transcriptome data. Two putative AMP genes (gapdh1 and gapdh2) were involved in glycolysis, which had extremely high expression levels in giant grouper muscle. As it has been reported that AMPs inhibit the growth of a broad spectrum of microbes and participate in regulating innate and adaptive immune responses, genome sequencing of this study provides a comprehensive cataloging of putative AMPs of groupers, supporting antimicrobial research and aquaculture therapy. These genomic resources will be beneficial to further molecular breeding of this economically important fish.


April 21, 2020  |  

Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus.

CRISPR-Cas systems provide adaptive immunity against phages in prokaryotes via DNA-encoded, RNA-mediated, nuclease-dependent targeting and cleavage. Due to inefficient and relatively limited DNA repair pathways in bacteria, CRISPR-Cas systems can be repurposed for lethal DNA targeting that selects for sequence variants. In this study, the relative killing efficiencies of endogenous Type I and Type II CRISPR-Cas systems in the model organism Streptococcus thermophilus DGCC7710 were assessed. Additionally, the genetic and phenotypic outcomes of chromosomal targeting by plasmid-programmed Type I-E or Type II-A systems were analyzed. Efficient killing was observed using both systems, in a dose-dependent manner when delivering 0.4-400 ng of plasmid DNA. Targeted PCR screening and genome sequencing were used to determine the genetic basis enabling survival, showing that evasion of Type I-E self-targeting was primarily the result of low-frequency defective plasmids that excised the targeting spacer. The most notable genotype recovered from Type II-A targeting of genomic locus, lacZ, was a 34 kb-deletion derived from homologous recombination (HR) between identical conserved sequences in two separate galE coding regions, resulting in 2% loss of the genome. Collectively, these results suggest that HR contributes to the plasticity and remodeling of bacterial genomes, leading to evasion of genome targeting by CRISPR-Cas systems. © FEMS 2019.


April 21, 2020  |  

Chromosomal-level assembly of the blolsod clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C.

The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae.A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated.We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China.

Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization.Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Klebsiella quasipneumoniae Provides a Window into Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions with the Hospital Environment.

Several emerging pathogens have arisen as a result of selection pressures exerted by modern health care. Klebsiella quasipneumoniae was recently defined as a new species, yet its prevalence, niche, and propensity to acquire antimicrobial resistance genes are not fully described. We have been tracking inter- and intraspecies transmission of the Klebsiella pneumoniae carbapenemase (KPC) gene, blaKPC, between bacteria isolated from a single institution. We applied a combination of Illumina and PacBio whole-genome sequencing to identify and compare K. quasipneumoniae from patients and the hospital environment over 10- and 5-year periods, respectively. There were 32 blaKPC-positive K. quasipneumoniae isolates, all of which were identified as K. pneumoniae in the clinical microbiology laboratory, from 8 patients and 11 sink drains, with evidence for seven separate blaKPC plasmid acquisitions. Analysis of a single subclade of K. quasipneumoniae subsp. quasipneumoniae (n?=?23 isolates) from three patients and six rooms demonstrated seeding of a sink by a patient, subsequent persistence of the strain in the hospital environment, and then possible transmission to another patient. Longitudinal analysis of this strain demonstrated the acquisition of two unique blaKPC plasmids and then subsequent within-strain genetic rearrangement through transposition and homologous recombination. Our analysis highlights the apparent molecular propensity of K. quasipneumoniae to persist in the environment as well as acquire carbapenemase plasmids from other species and enabled an assessment of the genetic rearrangements which may facilitate horizontal transmission of carbapenemases. Copyright © 2019 Mathers et al.


April 21, 2020  |  

The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition.

Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits.We obtained >187.22 and 178.87 gigabases of sequence, and ~288× and 248× genome coverage, to a pecan cultivar (“Pawnee”) and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives.Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage.This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

A critical comparison of technologies for a plant genome sequencing project.

A high-quality genome sequence of any model organism is an essential starting point for genetic and other studies. Older clone-based methods are slow and expensive, whereas faster, cheaper short-read-only assemblies can be incomplete and highly fragmented, which minimizes their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and associated new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, on larger (e.g., human) genomes. However, plant genomes can be much more repetitive and larger than the human genome, and plant biochemistry often makes obtaining high-quality DNA that is free from contaminants difficult. Reflecting their challenging nature, we observe that plant genome assembly statistics are typically poorer than for vertebrates.Here, we compare Illumina short read, Pacific Biosciences long read, 10x Genomics linked reads, Dovetail Hi-C, and BioNano Genomics optical maps, singly and combined, in producing high-quality long-range genome assemblies of the potato species Solanum verrucosum. We benchmark the assemblies for completeness and accuracy, as well as DNA compute requirements and sequencing costs.The field of genome sequencing and assembly is reaching maturity, and the differences we observe between assemblies are surprisingly small. We expect that our results will be helpful to other genome projects, and that these datasets will be used in benchmarking by assembly algorithm developers. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.

Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call “B-omics”. We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.


April 21, 2020  |  

Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation.

Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes.Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated.The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids. © The Author(s) 2018. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.