April 21, 2020  |  

Whole Genome Sequencing of the Giant Grouper (Epinephelus lanceolatus) and High-Throughput Screening of Putative Antimicrobial Peptide Genes.

Authors: Wang, Dengdong and Chen, Xiyang and Zhang, Xinhui and Li, Jia and Yi, Yunhai and Bian, Chao and Shi, Qiong and Lin, Haoran and Li, Shuisheng and Zhang, Yong and You, Xinxin

Giant groupers, the largest grouper type in the world, are of economic importance in marine aquaculture for their rapid growth. At the same time, bacterial and viral diseases have become the main threats to the grouper industry. Here, we report a high-quality genome of a giant grouper sequenced by an Illumina HiSeq X-Ten and PacBio Bioscience Sequel platform. A total of 254 putative antimicrobial peptide (AMP) genes were identified, which can be divided into 34 classes according to the annotation of the Antimicrobial Peptides Database (APD3). Their locations in pseudochromosomes were also determined. Thrombin-, lectin-, and scolopendin-derived putative AMPs were the three largest parts. In addition, expressions of putative AMPs were measured by our transcriptome data. Two putative AMP genes (gapdh1 and gapdh2) were involved in glycolysis, which had extremely high expression levels in giant grouper muscle. As it has been reported that AMPs inhibit the growth of a broad spectrum of microbes and participate in regulating innate and adaptive immune responses, genome sequencing of this study provides a comprehensive cataloging of putative AMPs of groupers, supporting antimicrobial research and aquaculture therapy. These genomic resources will be beneficial to further molecular breeding of this economically important fish.

Journal: Marine drugs
DOI: 10.3390/md17090503
Year: 2019

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.