Menu
April 21, 2020  |  

Consensus and variations in cell line specificity among human metapneumovirus strains.

Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.


April 21, 2020  |  

A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.

The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a ‘selective sweep’. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated with geographical origin and to determine whether signatures of population-specific positive selection could be detected. To do this, we sequenced the genomes of 25 isolates of S. sclerotiorum collected from four different continents-Australia, Africa (north and south), Europe and North America (Canada and the northen United States) and conducted SNP based analyses of population structure and selective sweeps. Among the 25 isolates, there was evidence for two major population clusters. One of these consisted of 11 isolates from Canada, the USA and France (population 1), and the other consisted of nine isolates from Australia and one from Morocco (population 2). The rest of the isolates were genotypic outliers. We found that there was evidence of outcrossing in these two populations based on linkage disequilibrium decay. However, only a single candidate selective sweep was observed, and it was present in population 2. This sweep was close to a Major Facilitator Superfamily transporter gene, and we speculate that this gene may have a role in nutrient uptake from the host. The low abundance of selective sweeps in the S. sclerotiorum genome contrasts the numerous examples in the genomes of other fungal pathogens. This may be a result of its slow rate of evolution and low effective recombination rate due to self-fertilisation and vegetative reproduction.


April 21, 2020  |  

Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification.

Variable region analysis of 16S rRNA gene sequences is the most common tool in bacterial taxonomic studies. Although used for distinguishing bacterial species, its use remains limited due to the presence of variable copy numbers with sequence variation in the genomes. In this study, 16S rRNA gene sequences, obtained from completely assembled whole genome and Sanger electrophoresis sequencing of cloned PCR products from Serratia fonticola GS2, were compared. Sanger sequencing produced a combination of sequences from multiple copies of 16S rRNA genes. To determine whether the variant copies of 16S rRNA genes affected Sanger sequencing, two ratios (5:5 and 8:2) with different concentrations of cloned 16S rRNA genes were used; it was observed that the greater the number of copies with similar sequences the higher its chance of amplification. Effect of multiple copies for taxonomic classification of 16S rRNA gene sequences was investigated using the strain GS2 as a model. 16S rRNA copies with the maximum variation had 99.42% minimum pairwise similarity and this did not have an effect on species identification. Thus, PCR products from genomes containing variable 16S rRNA gene copies can provide sufficient information for species identification except from species which have high similarity of sequences in their 16S rRNA gene copies like the case of Bacillus thuringiensis and Bacillus cereus. In silico analysis of 1,616 bacterial genomes from long-read sequencing was also done. The average minimum pairwise similarity for each phylum was reported with their average genome size and average “unique copies” of 16S rRNA genes and we found that the phyla Proteobacteria and Firmicutes showed the highest amount of variation in their copies of their 16S rRNA genes. Overall, our results shed light on how the variations in the multiple copies of the 16S rRNA genes of bacteria can aid in appropriate species identification.


April 21, 2020  |  

Complete Genome Sequence of Lactococcus lactis subsp. cremoris 3107, Host for the Model Lactococcal P335 Bacteriophage TP901-1.

The complete genome sequence of Lactococcus lactis subsp. cremoris 3107, a dairy starter strain and a host for the model lactococcal P335 bacteriophage TP901-1, is reported here. The circular chromosome of L. lactis subsp. cremoris 3107 is among the smallest genomes of currently sequenced lactococcal strains. L. lactis subsp. cremoris 3107 harbors a complement of six plasmids, which appears to be a reflection of its adaptation to the nutrient-rich dairy environment.


April 21, 2020  |  

Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China’s Shenzhou 11 spacecraft.

China has prepared for construction of a space station by the early 2020s. The mission will require astronauts to stay on the space station for at least 180 days. Microbes isolated from the International Space Station (ISS) have shown profound resistance to clinical antibiotics and environmental stresses. Previous studies have demonstrated that the space environment could affect microbial survival, growth, virulence, biofilms, metabolism, as well as their antibiotic-resistant phenotypes. Furthermore, several studies have reported that astronauts experience a decline in their immunity during long-duration spaceflights. Monitoring microbiomes in the ISS or the spacecraft will be beneficial for the prevention of infection among the astronauts during spaceflight. The development of a manned space program worldwide not only provides an opportunity to investigate the impact of this extreme environment on opportunistic pathogenic microbes, but also offers a unique platform to detect mutations in pathogenic bacteria. Various microorganisms have been carried on a spacecraft for academic purposes. Acinetobacter baumannii is a common multidrug-resistant bacterium often prevalent in hospitals. Variations in the ability to cope with environmental hazards increase the chances of microbial survival. Our study aimed to compare phenotypic variations and analyze genomic and transcriptomic variations in A. baumannii among three different groups: SS1 (33 days on the Shenzhou 11 spacecraft), GS1 (ground control), and Aba (reference strain). Consequently, the biofilm formation ability of the SS1 strain decreased after 33 days of spaceflight. Furthermore, high-throughput sequencing revealed that some differentially expressed genes were downregulated in the SS1 strain compared with those in the GS1 strain. In conclusion, this present study provides insights into the environmental adaptation of A. baumannii and might be useful for understanding changes in the opportunistic pathogenic microbes on our spacecraft and on China’s future ISS. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B.?ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B.?ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B.?ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia?cepacia complex bacteria. Removal of the third replicon reduced B.?ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.


April 21, 2020  |  

Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize.

Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection. © 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes.

Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94?Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5?kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant-pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis.

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, “Huang Qin,” are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4′-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4′-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4′-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides.

Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.


April 21, 2020  |  

Long-read sequence and assembly of segmental duplications.

We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/SDA ) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-molecule, real-time sequence data from three human genomes and recover 33-79 megabase pairs (Mb) of duplications in which approximately half of the loci are diverged (<99.8%) compared to the reference genome. We show that the corresponding sequence is highly accurate (>99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that are absent from the human reference genome. Our method can be applied to other complex genomes to resolve the last gene-rich gaps, improve duplicate gene annotation, and better understand copy-number-variant genetic diversity at the base-pair level.


April 21, 2020  |  

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of N. flagelliforme to thrive under extreme abiotic stresses is supported by the acquisition of genes involved in the protection of photosynthetic apparatus, the formation of monounsaturated fatty acids, responses to UV radiation, and a peculiar role of ornithine metabolism. Transcriptome analysis revealed a distinct acclimation strategy to rehydration, including the strong constitutive expression of genes encoding photosystem I assembly factors and the involvement of post-transcriptional control mechanisms of photosynthetic resuscitation. Our results provide insights into the adaptive mechanisms of subaerial cyanobacteria in their harsh habitats and have important implications to understand the evolutionary transition of cyanobacteria from aquatic environments to terrestrial ecosystems. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation.

It is largely unknown how living organisms-especially vertebrates-survive and thrive in the coldness, darkness and high pressures of the hadal zone. Here, we describe the unique morphology and genome of Pseudoliparis swirei-a recently described snailfish species living below a depth of 6,000?m in the Mariana Trench. Unlike closely related shallow sea species, P. swirei has transparent, unpigmented skin and scales, thin and incompletely ossified bones, an inflated stomach and a non-closed skull. Phylogenetic analyses show that P. swirei diverged from a close relative living near the sea surface about 20?million?years ago and has abundant genetic diversity. Genomic analyses reveal that: (1) the bone Gla protein (bglap) gene has a frameshift mutation that may cause early termination of cartilage calcification; (2) cell membrane fluidity and transport protein activity in P. swirei may have been enhanced by changes in protein sequences and gene expansion; and (3) the stability of its proteins may have been increased by critical mutations in the trimethylamine N-oxide-synthesizing enzyme and hsp90 chaperone protein. Our results provide insights into the morphological, physiological and molecular evolution of hadal vertebrates.


April 21, 2020  |  

Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans.

Marine algae convert a substantial fraction of fixed carbon dioxide into various polysaccharides. Flavobacteriia that are specialized on algal polysaccharide degradation feature genomic clusters termed polysaccharide utilization loci (PULs). As knowledge on extant PUL diversity is sparse, we sequenced the genomes of 53 North Sea Flavobacteriia and obtained 400 PULs. Bioinformatic PUL annotations suggest usage of a large array of polysaccharides, including laminarin, a-glucans, and alginate as well as mannose-, fucose-, and xylose-rich substrates. Many of the PULs exhibit new genetic architectures and suggest substrates rarely described for marine environments. The isolates’ PUL repertoires often differed considerably within genera, corroborating ecological niche-associated glycan partitioning. Polysaccharide uptake in Flavobacteriia is mediated by SusCD-like transporter complexes. Respective protein trees revealed clustering according to polysaccharide specificities predicted by PUL annotations. Using the trees, we analyzed expression of SusC/D homologs in multiyear phytoplankton bloom-associated metaproteomes and found indications for profound changes in microbial utilization of laminarin, a-glucans, ß-mannan, and sulfated xylan. We hence suggest the suitability of SusC/D-like transporter protein expression within heterotrophic bacteria as a proxy for the temporal utilization of discrete polysaccharides.


April 21, 2020  |  

From markers to genome-based breeding in wheat.

Recent technological advances in wheat genomics provide new opportunities to uncover genetic variation in traits of breeding interest and enable genome-based breeding to deliver wheat cultivars for the projected food requirements for 2050. There has been tremendous progress in development of whole-genome sequencing resources in wheat and its progenitor species during the last 5 years. High-throughput genotyping is now possible in wheat not only for routine gene introgression but also for high-density genome-wide genotyping. This is a major transition phase to enable genome-based breeding to achieve progressive genetic gains to parallel to projected wheat production demands. These advances have intrigued wheat researchers to practice less pursued analytical approaches which were not practiced due to the short history of genome sequence availability. Such approaches have been successful in gene discovery and breeding applications in other crops and animals for which genome sequences have been available for much longer. These strategies include, (i) environmental genome-wide association studies in wheat genetic resources stored in genbanks to identify genes for local adaptation by using agroclimatic traits as phenotypes, (ii) haplotype-based analyses to improve the statistical power and resolution of genomic selection and gene mapping experiments, (iii) new breeding strategies for genome-based prediction of heterosis patterns in wheat, and (iv) ultimate use of genomics information to develop more efficient and robust genome-wide genotyping platforms to precisely predict higher yield potential and stability with greater precision. Genome-based breeding has potential to achieve the ultimate objective of ensuring sustainable wheat production through developing high yielding, climate-resilient wheat cultivars with high nutritional quality.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.