X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, March 30, 2020

AGBT Presentation: Feed the World – Developing genomic resources for insects as food

In a push to develop insect-based food sources for people, Brenda Oppert from the USDA has been sequencing bug genomes with PacBio technology. Long reads are essential because of the highly repetitive sequences and large genomes. On the Sequel II System, a single SMRT Cell is sufficient to generate 350-fold coverage and produce a high-quality assembly for some of the insects she’s studying.

Read More »

Monday, March 30, 2020

User Group Meeting: Improved assembly of segmental duplications using HiFi

In this PacBio User Group Meeting presentation, Mitchell Vollger of the University of Washington used HiFi reads from SMRT Sequencing to study segmental duplications in the human genome. The technique significantly reduced the complexity of accurately mapping these nearly identical sequences throughout the genome; it also reduced the amount of compute power needed compared to a previous PacBio assembly using continuous long reads instead of circular consensus sequencing. Despite generating less data with the HiFi assembly, the team still resolved 30% more segmental duplications with the new approach.

Read More »

Monday, March 30, 2020

User Group Meeting: Sequencing chemistry & application updates

To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.

Read More »

Monday, March 30, 2020

PAG Conference: From sequencing to chromosomes – new de novo assembly and scaffolding methods improve the goat reference genome

Sergey Koren of the National Biodefense Analysis and Countermeasures Center (NBACC) discusses integrating the MinHash Alignment Process (MHAP) with Celera Assembler to enable reference-grade assemblies of model organisms, revealing novel heterochromatic sequences and filling low-complexity gap sequences in the GRCh38 human reference genome. Dr. Koren and his team have applied this method to assemble the San Clemente goat genome. Combining SMRT Sequencing and next-generation optical mapping from BioNano Genomics generates an assembly that is over 150-fold more contiguous than the latest Capra hircusgoat reference. In combination with Hi-C sequencing, the assembly surpasses reference assemblies de novo, with minimal manual intervention.…

Read More »

Monday, March 30, 2020

AGBT Conference: A community effort using multiple technologies to produce a dramatically improved genome assembly of the Zika virus mosquito vector

At AGBT 2017, the Broad Institute’s Daniel Neafsey reported a large collaborative effort to sequence the mosquito that carries Zika virus. The team is using long-read PacBio sequencing to produce a high-quality genome assembly, which Neafsey expects will replace the 10-year-old Sanger assembly for Aedes aegypti. The new assembly reduces the number of contigs by at least 10-fold, boosts the contig N50 to nearly 2 Mb, and features more complete gene content.

Read More »

Wednesday, February 26, 2020

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more…

Read More »

Wednesday, February 26, 2020

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We…

Read More »

Wednesday, February 26, 2020

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability…

Read More »

Wednesday, February 26, 2020

Progress on the reassembly and annotation of the goat genome.

The goat (Capra hircus) remains an important livestock species due to the species’ ability to forage and provide milk, meat and wool in arid environments. The current goat reference assembly and annotation borrows heavily from other loosely related livestock species, such as cattle, and may not reflect the unique structural and functional characteristics of the species. We present preliminary data from a new de novo reference assembly for goat that primarily utilizes 38 million PacBio P5-C3 reads generated from an inbred San Clemente goat. This assembly consists of only 5,902 contigs with a contig N50 size of 2.56 megabases which…

Read More »

Wednesday, February 26, 2020

A genome assembly of the domestic goat from 70x coverage of single molecule, real-time sequence.

Goat is an important source of milk, meat, and fiber, especially in developing countries. An advantage of goats as livestock is the low maintenance requirements and high adaptability compared to other milk producers. The global population of domestic goats exceeds 800 million. In Africa, goat production is characterized by low productivity levels, and attempts to introduce more productive breeds have met with poor success due in part to nutritional constraints. It has been suggested that incorporation of selective breeding within the herds adapted for survival could represent one approach to improving food security across Africa. A recently produced genome assembly…

Read More »

Wednesday, February 26, 2020

MinHash for overlapping and assembly

2015 SMRT Informatics Developers Conference Presentation Slides: Sergey Koren of National Biodefense Analysis and Countermeasures Center (NBACC) provided an overview of the MHAP algorithm, a method for assembling large genomes with Sing-Molecule Sequencing and locality sensitive hashing. Using MHAP, Koren produced a human assembly (CHM1) with a contig N50 of >23 Mb.

Read More »

Wednesday, February 26, 2020

Genome in a Bottle: You’ve sequenced. How well did you do?

Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group…

Read More »

Wednesday, February 26, 2020

Improving the goat long-read assembly with optical mapping and Hi-C scaffolding

Reference genome assemblies provide important context in genetics by standardizing the order of genes and providing a universal set of coordinates for individual nucleotides. Often due to the high complexity of genic regions and higher copy number of genes involved in immune function, immunity-related genes are often misassembled in current reference assemblies. This problem is particularly ubiquitous in the reference genomes of non-model organisms as they often do not receive the years of curation necessary to resolve annotation and assembly errors. In this study, we reassemble a reference genome of the goat (Capra hircus) using modern PacBio technology in tandem…

Read More »

Wednesday, February 26, 2020

From Sequencing to Chromosomes: New de novo assembly and scaffolding methods improve the goat reference genome

Single-molecule sequencing is now routinely used to assemble complete, high-quality microbial genomes, but these assembly methods have not scaled well to large genomes. To address this problem, we previously introduced the MinHash Alignment Process (MHAP) for overlapping single-molecule reads using probabilistic, locality-sensitive hashing. Integrating MHAP with Celera Assembler (CA) has enabled reference-grade assemblies of model organisms, revealing novel heterochromatic sequences and filling low-complexity gap sequences in the GRCh38 human reference genome. We have applied our methods to assemble the San Clemente goat genome. Combining single-molecule sequencing from Pacific Biosciences and BioNano Genomics generates and assembly that is over 150-fold more…

Read More »

1 2

Subscribe for blog updates:

Archives