Menu
July 7, 2019  |  

Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM(12)), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM(12). By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


July 7, 2019  |  

Genomic and transcriptomic analyses reveal the characterization of a crude oil degrading bacterial strain: Pedobacter steynii DX4

Pedobacter steynii DX4, isolated from Qinghai-Tibet plateau, exhibited capability to effectively degrade crude oil at low temperature. In order to illustrate its biodegradation mechanism, whole genome and transcriptome sequencing were performed. It is the first genome of crude oil degrading strain in Pedobacter genus. The P. steynii DX4 genome consists of a single circular chromosome of 6,581,659 bp with an average G+C content of 41.31% and encodes 5464 genes in all. GIs were predicted and comparison analysis was performed between relative species. Genome annotation predicted several hydrocarbon oxygenases, chemotaxis proteins and biosurfactant synthetases. The transcriptional sequences profiled a lot of differently expressed genes when cells respectively grown on crude oil and pyruvate mediums. Crude oil significantly stimulated the expression of the genes related to the hydrocarbon oxidation and resparitory chain. Genomic and transcriptomic analysis of P. steynii DX4 have revealed the machenism of the crude oil degradation in Pedobacter steynii DX4 and provided us with valuable knowledge base to make effective strategy to mitigate the ecological damage caused by crude oil pollution.


July 7, 2019  |  

Systems biology-guided biodesign of consolidated lignin conversion

Lignin is the second most abundant biopolymer on the earth, yet its utilization for fungible products is complicated by its recalcitrant nature and remains a major challenge for sustainable lignocellulosic biorefineries. In this study, we used a systems biology approach to reveal the carbon utilization pattern and lignin degradation mechanisms in a unique lignin-utilizing Pseudomonas putida strain (A514). The mechanistic study further guided the design of three functional modules to enable a consolidated lignin bioconversion route. First, P. putida A514 mobilized a dye peroxidase-based enzymatic system for lignin depolymerization. This system could be enhanced by overexpressing a secreted multifunctional dye peroxidase to promote a two-fold enhancement of cell growth on insoluble kraft lignin. Second, A514 employed a variety of peripheral and central catabolism pathways to metabolize aromatic compounds, which can be optimized by overexpressing key enzymes. Third, the ß-oxidation of fatty acid was up-regulated, whereas fatty acid synthesis was down-regulated when A514 was grown on lignin and vanillic acid. Therefore, the functional module for polyhydroxyalkanoate (PHA) production was designed to rechannel ß-oxidation products. As a result, PHA content reached 73% per cell dry weight (CDW). Further integrating the three functional modules enhanced the production of PHA from kraft lignin and biorefinery waste. Thus, this study elucidated lignin conversion mechanisms in bacteria with potential industrial implications and laid out the concept for engineering a consolidated lignin conversion route.


July 7, 2019  |  

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


July 7, 2019  |  

Complete genome sequence of Siansivirga zeaxanthinifaciens CC-SAMT-1T, a flavobacterium isolated from coastal surface seawater

Here we present the complete genome sequence of Siansivirga zeaxanthinifaciens CC-SAMT-1T, a flavobacterium isolated from coastal surface seawater. A 3.3Mb genome revealed remarkable specialization of this bacterium particularly in the degradation of sulfated polysaccharides available as detritus or in dissolved phase. Besides utilizing high molecular weight organic biopolymers, this strain appears to accomplish assimilatory sulfate reduction, sulfide oxidation, and acquisition and inter-conversion of inorganic carbon. Genes encoding zeaxanthin and three different kinds of DNA photolyase/cryptochrome (senses blue light) were present, while genes that code for blue light sensing BLUF domain proteins and red/far-red light sensing phytochromes were absent. Furthermore, CC-SAMT-1T lacked the rhodopsin photosystem and all other genes that confer any other known forms of phototrophy. The genomic data revealed that CC-SAMT-1T is highly adapted to sulfur-rich coastal environments, where it most likely contributes to marine carbon and sulfur cycles by metabolizing sulfated polysaccharides as well as inorganic sulfur.


July 7, 2019  |  

Complete genome sequence of Tsukamurella sp. MH1: A wide-chain length alkane-degrading actinomycete.

Tsukamurella sp. strain MH1, capable to use a wide range of n-alkanes as the only carbon source, was isolated from petroleum-contaminated soil (Pite?ti, Romania) and its complete genome was sequenced. The 4,922,396?bp genome contains only one circular chromosome with a G?+?C content of 71.12%, much higher than the type strains of this genus (68.4%). Based on the 16S rRNA genes sequence similarity, strain MH1 was taxonomically identified as Tsukamurella carboxydivorans. Genome analyses revealed that strain MH1 is harboring only one gene encoding for the alkB-like hydroxylase, arranged in a complete alkane monooxygenase operon. This is the first complete genome of the specie T. carboxydivorans, which will provide insights into the potential of Tsukamurella sp. MH1 and related strains for bioremediation of petroleum hydrocarbons-contaminated sites and into the environmental role of these bacteria. Copyright © 2017. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile

Rhodococcus sp. H-CA8f was isolated from marine sediments obtained from the Comau fjord, located in Northern Chilean Patagonia. Whole-genome sequencing was achieved using PacBio RS II platform, comprising one closed, complete chromosome of 6,19?Mbp with a 62.45% G?+?C content. The chromosome harbours several metabolic pathways providing a wide catabolic potential, where the upper biphenyl route is described. Also, Rhodococcus sp. H-CA8f bears one linear mega-plasmid of 301?Kbp and 62.34% of G?+?C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. These genetic characteristics provide relevant insights regarding Chilean marine actinobacterial strains.


July 7, 2019  |  

Synthetic biology, genome mining, and combinatorial biosynthesis of NRPS-derived antibiotics: a perspective.

Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the speed and robustness of combinatorial biosynthesis of NRPS-derived natural products for drug discovery.


July 7, 2019  |  

Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies.

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequences of two Bacillus pumilus strains from Cuatrociénegas, Coahuila, Mexico.

We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. Copyright © 2018 Zarza et al.


July 7, 2019  |  

Isolation and identification of an anthracimycin analogue from Nocardiopsis kunsanensis, a halophile from a saltern, by genomic mining strategy.

Modern medicine is unthinkable without antibiotics; yet, growing issues with microbial drug resistance require intensified search for new active compounds. Natural products generated by Actinobacteria have been a rich source of candidate antibiotics, for example anthracimycin that, so far, is only known to be produced by Streptomyces species. Based on sequence similarity with the respective biosynthetic cluster, we sifted through available microbial genome data with the goal to find alternative anthracimycin-producing organisms. In this work, we report about the prediction and experimental verification of the production of anthracimycin derivatives by Nocardiopsis kunsanensis, a non-Streptomyces actinobacterial microorganism. We discovered N. kunsanensis to predominantly produce a new anthracimycin derivative with methyl group at C-8 and none at C-2, labeled anthracimycin BII-2619, besides a minor amount of anthracimycin. It displays activity against Gram-positive bacteria with similar low level of mammalian cytotoxicity as that of anthracimycin.


July 7, 2019  |  

Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication.

The mismatch repair (MMR) system, exemplified by the MutS/MutL proteins, is widespread in Bacteria and Eukarya. However, molecular mechanisms how numerous archaea and bacteria lacking the mutS/mutL genes maintain high replication fidelity and genome stability have remained elusive. EndoMS is a recently discovered hyperthermophilic mismatch-specific endonuclease encoded by nucS in Thermococcales. We deleted the nucS from the actinobacterium Corynebacterium glutamicum and demonstrated a drastic increase of spontaneous transition mutations in the nucS deletion strain. The observed spectra of these mutations were consistent with the enzymatic properties of EndoMS in vitro. The robust mismatch-specific endonuclease activity was detected with the purified C. glutamicum EndoMS protein but only in the presence of the ß-clamp (DnaN). Our biochemical and genetic data suggest that the frequently occurring G/T mismatch is efficiently repaired by the bacterial EndoMS-ß-clamp complex formed via a carboxy-terminal sequence motif of EndoMS proteins. Our study thus has great implications for understanding how the activity of the novel MMR system is coordinated with the replisome and provides new mechanistic insight into genetic diversity and mutational patterns in industrially and clinically (e.g. Mycobacteria) important archaeal and bacterial phyla previously thought to be devoid of the MMR system.


July 7, 2019  |  

Complete genome sequence of Streptomyces sp. strain BSE7F, a Bali mangrove sediment actinobacterium with antimicrobial activities.

The strain Streptomyces sp. BSE7F, a novel Streptomyces strain isolated from Indonesian mangrove sediment, displays antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria, and yeast. Bioinformatic analysis of the genome sequence revealed the occurrence of 22 biosynthetic gene clusters disclosing the secondary metabolite capacity of strain BSE7F. Copyright © 2018 Handayani et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.