April 21, 2020  |  

Complete Nucleotide Sequences of mcr-4.3-Carrying Plasmids in Acinetobacter baumannii Sequence Type 345 of Human and Food Origin from the Czech Republic, the First Case in Europe.

Here, we describe two plasmids carrying mcr-4.3 in two Acinetobacter baumannii strains isolated from imported food and a clinical sample. The comparative analysis of these plasmids, with two other plasmids reported in the NCBI database, highlighted the common origin of the plasmidic structure carrying mcr-4.3 This is the first case of the mcr-4.3 gene in a A. baumannii strain isolated from a clinical case in Europe. We hypothesize that food import is initiating the spread in Czech Republic.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages.

The spread of antimicrobial resistance genes (ARGs) among Gram-negative pathogens, including Acinetobacter baumannii, is primarily mediated by transferable plasmids; however, ARGs are frequently integrated into its chromosome. How ARG gets horizontally incorporated into the chromosome of A. baumannii, and whether it functions as a cause for further spread of ARG, remains unknown. Here, we demonstrated intercellular prophage-mediated transfer of chromosomal ARGs without direct cell-cell interaction in A. baumannii We prepared ARG-harboring extracellular DNA (eDNA) components from the culture supernatant of a multidrug-resistant (MDR) A. baumannii NU-60 strain and exposed an antimicrobial-susceptible (AS) A. baumannii ATCC 17978 strain to the eDNA components. The antimicrobial-resistant (AR) A. baumannii ATCC 17978 derivatives appeared to acquire various ARGs, originating from dispersed loci of the MDR A. baumannii chromosome, along with their surrounding regions, by homologous recombination, with the ARGs including armA (aminoglycoside resistance), blaTEM-1 (ß-lactam resistance), tet(B) (tetracycline resistance), and gyrA-81L (nalidixic acid resistance) genes. Notably, the eDNAs conferring antimicrobial resistance were enveloped in specific capsid proteins consisting of phage particles, thereby protecting the eDNAs from detergent and DNase treatments. The phages containing ARGs were likely released into the extracellular space from MDR A. baumannii, thereby transducing ARGs into AS A. baumannii, resulting in the acquisition of AR properties by the recipient. We concluded that the generalized transduction, in which phages were capable of carrying random pieces of A. baumannii genomic DNAs, enabled efficacious intercellular transfer of chromosomal ARGs between A. baumannii strains without direct cell-cell interaction. Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Whole-Genome Sequences of Five Acinetobacter baumannii Strains From a Child With Leukemia M2.

Acinetobacter baumannii is an opportunistic pathogen and is one of the primary etiological agents of healthcare-associated infections (HAIs). A. baumannii infections are difficult to treat due to the intrinsic and acquired antibiotic resistance of strains of this bacterium, which frequently limits therapeutic options. In this study, five A. baumannii strains (810CP, 433H, 434H, 483H, and A-2), all of which were isolated from a child with leukemia M2, were characterized through antibiotic susceptibility profiling, the detection of genes encoding carbapenem hydrolyzing oxacillinases, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), adherence and invasion assays toward the A549 cell line, and the whole-genome sequence (WGS). The five strains showed Multidrug resistant (MDR) profiles and amplification of the blaOXA-23 gene, belonging to ST758 and grouped into two PFGE clusters. WGS of 810CP revealed the presence of a circular chromosome and two small plasmids, pAba810CPa and pAba810CPb. Both plasmids carried genes encoding the Sp1TA system, although resistance genes were not identified. A gene-by-gene comparison analysis was performed among the A. baumannii strains isolated in this study and others A. baumannii ST758 strains (HIMFG and INCan), showing that 86% of genes were present in all analyzed strains. Interestingly, the 433H, 434H, and 483H strains varied by 8-10 single-nucleotide variants (SNVs), while the A2 and 810CP strains varied by 46 SNVs. Subsequently, an analysis using BacWGSTdb showed that all of our strains had the same resistance genes and were ST758. However, some variations were observed in relation to virulence genes, mainly in the 810CP strain. The genes involved in the synthesis of hepta-acylated lipooligosaccharides, the pgaABCD locus encoding poly-ß-1-6-N-acetylglucosamine, the ompA gene, Csu pili, bap, the two-component system bfms/bfmR, a member of the phospholipase D family, and two iron-uptake systems were identified in our A. baumannii strains genome. The five A. baumannii strains isolated from the child were genetically different and showed important characteristics that promote survival in a hospital environment. The elucidation of their genomic sequences provides important information for understanding their epidemiology, antibiotic resistance, and putative virulence factors.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.