Menu
September 22, 2019  |  

Coculture of marine Streptomyces sp. with Bacillus sp. produces a newpiperazic acid-bearing cyclic peptide.

Microbial culture conditions in the laboratory, which conventionally involve the cultivation of one strain in one culture vessel, are vastly different from natural microbial environments. Even though perfectly mimicking natural microbial interactions is virtually impossible, the cocultivation of multiple microbial strains is a reasonable strategy to induce the production of secondary metabolites, which enables the discovery of new bioactive natural products. Our coculture of marine Streptomyces and Bacillus strains isolated together from an intertidal mudflat led to discover a new metabolite, dentigerumycin E (1). Dentigerumycin E was determined to be a new cyclic hexapeptide incorporating three piperazic acids, N-OH-Thr, N-OH-Gly, ß-OH-Leu, and a pyran-bearing polyketide acyl chain mainly by analysis of its NMR and MS spectroscopic data. The putative PKS-NRPS biosynthetic gene cluster for dentigerumycin E was found in the Streptomyces strain, providing clear evidence that this cyclic peptide is produced by the Streptomyces strain. The absolute configuration of dentigerumycin E was established based on the advanced Marfey’s method, ROESY NMR correlations, and analysis of the amino acid sequence of the ketoreductase domain in the biosynthetic gene cluster. In biological evaluation of dentigerumycin E (1) and its chemical derivatives [2-N,16-N-deoxydenteigerumycin E (2) and dentigerumycin methyl ester (3)], only dentigerumycin E exhibited antiproliferative and antimetastatic activities against human cancer cells, indicating that N-OH and carboxylic acid functional groups are essential for the biological activity.


September 22, 2019  |  

Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype.

Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Complete genome sequence and characterization of linezolid-resistant Enterococcus faecalis clinical isolate KUB3006 carrying a cfr(B)-transposon on its chromosome and optrA-plasmid.

Linezolid (LZD) has become one of the most important antimicrobial agents for infections caused by gram-positive bacteria, including those caused by Enterococcus species. LZD-resistant (LR) genetic features include mutations in 23S rRNA/ribosomal proteins, a plasmid-borne 23S rRNA methyltransferase gene cfr, and ribosomal protection genes (optrA and poxtA). Recently, a cfr gene variant, cfr(B), was identified in a Tn6218-like transposon (Tn) in a Clostridioides difficile isolate. Here, we isolated an LR Enterococcus faecalis clinical isolate, KUB3006, from a urine specimen of a patient with urinary tract infection during hospitalization in 2017. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in E. faecalis isolate KUB3006. Complete genome sequencing of KUB3006 revealed that it carried cfr(B) on a chromosomal Tn6218-like element. Surprisingly, this Tn6218-like element was almost (99%) identical to that of C. difficile Ox3196, which was isolated from a human in the UK in 2012, and to that of Enterococcus faecium 5_Efcm_HA-NL, which was isolated from a human in the Netherlands in 2012. An additional oxazolidinone and phenicol resistance gene, optrA, was also identified on a plasmid. KUB3006 is sequence type (ST) 729, suggesting that it is a minor ST that has not been reported previously and is unlikely to be a high-risk E. faecalis lineage. In summary, LR E. faecalis KUB3006 possesses a notable Tn6218-like-borne cfr(B) and a plasmid-borne optrA. This finding raises further concerns regarding the potential declining effectiveness of LZD treatment in the future.


September 22, 2019  |  

Loss of bacitracin resistance due to a large genomic deletion among Bacillus anthracis strains.

Bacillus anthracis is a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity of B. anthracis strains in Zambia, we sequenced and compared the genomic DNA of B. anthracis strains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a few B. anthracis strains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of the Bacillus cereus group. The diversity and genomic characteristics of B. anthracis strains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia. IMPORTANCE Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.


September 22, 2019  |  

Genome sequence and metabolic analysis of a fluoranthene-degrading strain Pseudomonas aeruginosa DN1.

Pseudomonas aeruginosa DN1, isolated from petroleum-contaminated soil, showed excellent degradation ability toward diverse polycyclic aromatic hydrocarbons (PAHs). Many studies have been done to improve its degradation ability. However, the molecular mechanisms of PAHs degradation in DN1 strain are unclear. In this study, the whole genome of DN1 strain was sequenced and analyzed. Its genome contains 6,641,902 bp and encodes 6,684 putative open reading frames (ORFs), which has the largest genome in almost all the comparative Pseudomonas strains. Results of gene annotation showed that this strain harbored over 100 candidate genes involved in PAHs degradation, including those encoding 25 dioxygenases, four ring-hydroxylating dioxygenases, five ring-cleaving dioxygenases, and various catabolic enzymes, transcriptional regulators, and transporters in the degradation pathways. In addition, gene knockout experiments revealed that the disruption of some key PAHs degradation genes in DN1 strain, such as catA, pcaG, pcaH, and rhdA, did not completely inhibit fluoranthene degradation, even though their degradative rate reduced to some extent. Three intermediate metabolites, including 9-hydroxyfluorene, 1-acenaphthenone, and 1, 8-naphthalic anhydride, were identified as the dominating intermediates in presence of 50 µg/mL fluoranthene as the sole carbon source according to gas chromatography mass spectrometry analysis. Taken together, the genomic and metabolic analysis indicated that the fluoranthene degradation by DN1 strain was initiated by dioxygenation at the C-1, 2-, C-2, 3-, and C-7, 8- positions. These results provide new insights into the genomic plasticity and environmental adaptation of DN1 strain.


September 22, 2019  |  

The Butanol Producing Microbe Clostridium beijerinckii NCIMB 14988 Manipulated Using Forward and Reverse Genetic Tools.

The solventogenic anaerobe Clostridium beijerinckii has potential for use in the sustainable bioconversion of plant-derived carbohydrates into solvents, such as butanol or acetone. However, relatively few strains have been extensively characterised either at the genomic level or through exemplification of a complete genetic toolkit. To remedy this situation, a new strain of C. beijerinckii, NCIMB 14988, is selected from among a total of 55 new clostridial isolates capable of growth on hexose and pentose sugars. Chosen on the basis of its favorable properties, the complete genome sequence of NCIMB 14988 is determined and a high-efficiency plasmid transformation protocol devised. The developed DNA transfer procedure allowed demonstration in NCIMB 14988 of the forward and reverse genetic techniques of transposon mutagenesis and gene knockout, respectively. The latter is accomplished through the successful deployment of both group II intron retargeting (ClosTron) and allelic exchange. In addition to gene inactivation, the developed allelic exchange procedure is used to create point mutations in the chromosome, allowing for the effect of amino acid changes in enzymes involved in primary metabolism to be characterized. ClosTron mediated disruption of the currently unannotated non-coding region between genes LF65_05915 and LF65_05920 is found to result in a non-sporulating phenotype.© 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.


September 22, 2019  |  

Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation.

Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism.The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G?+?C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a ?11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS).We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.


September 22, 2019  |  

Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson’s Disease.


September 22, 2019  |  

Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China.

Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals.PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination.Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs =512 µg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken.Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.


September 22, 2019  |  

Novel linezolid resistance plasmids in Enterococcus from food animals in the USA.

To sequence the genomes and determine the genetic mechanisms for linezolid resistance identified in three strains of Enterococcus isolated from cattle and swine caecal contents as part of the US National Antimicrobial Resistance Monitoring System (NARMS) surveillance programme.Broth microdilution was used for in vitro antimicrobial susceptibility testing to assess linezolid resistance. Resistance mechanisms and plasmid types were identified from data generated by WGS on Illumina® and PacBio® platforms. Conjugation experiments were performed to determine whether identified mechanisms were transmissible.Linezolid resistance plasmids containing optrA were identified in two Enterococcus faecalis isolates and one Enterococcus faecium. The E. faecium isolate also carried the linezolid resistance gene cfr on the same plasmid as optrA. The linezolid resistance plasmids had various combinations of additional resistance genes conferring resistance to phenicols (fexA), aminoglycosides [spc and aph(3′)-III] and macrolides [erm(A) and erm(B)]. One of the plasmids was confirmed to be transmissible by conjugation, resulting in linezolid resistance in the transconjugant.To the best of our knowledge, this is the first identification of linezolid resistance in the USA in bacteria isolated from food animals. The oxazolidinone class of antibiotics is not used in food animals in the USA, but the genes responsible for resistance were identified on plasmids with other resistance markers, indicating that there may be co-selection for these plasmids due to the use of different antimicrobials. The transmissibility of one of the plasmids demonstrated the potential for linezolid resistance to spread horizontally. Additional surveillance is necessary to determine whether similar plasmids are present in human strains of Enterococcus.


September 22, 2019  |  

Transcriptional landscape of a blaKPC-2 plasmid and response to imipenem exposure in Escherichia coli TOP10.

The diffusion of KPC-2 carbapenemase is closely related to the spread of Klebsiella pneumoniae of the clonal-group 258 and linked to IncFIIK plasmids. Little is known about the biology of multi-drug resistant plasmids and the reasons of their successful dissemination. Using E. coli TOP10 strain harboring a multi-replicon IncFIIK-IncFIB blaKPC-2-gene carrying plasmid pBIC1a from K. pneumoniae ST-258 clinical isolate BIC-1, we aimed to identify basal gene expression and the effects of imipenem exposure using whole transcriptome approach by RNA sequencing (RNA-Seq). Independently of the antibiotic pressure, most of the plasmid-backbone genes were expressed at low levels. The most expressed pBIC1a genes were involved in antibiotic resistance (blaKPC-2, blaTEM and aph(3′)-I), in plasmid replication and conjugation, or associated to mobile elements. After antibiotic exposure, 34% of E. coli (pBIC1a) genome was differentially expressed. Induction of oxidative stress response was evidenced, with numerous upregulated genes of the SoxRS/OxyR oxydative stress regulons, the Fur regulon (for iron uptake machinery), and IscR regulon (for iron sulfur cluster synthesis). Nine genes carried by pBIC1a were up-regulated, including the murein DD-endopeptidase mepM and the copper resistance operon. Despite the presence of a carbapenemase, we observed a major impact on E. coli (pBIC1a) whole transcriptome after imipenem exposure, but no effect on the level of transcription of antimicrobial resistance genes. We describe adaptive responses of E. coli to imipenem-induced stress, and identified plasmid-encoded genes that could be involved in resistance to stressful environments.


September 22, 2019  |  

Genotypes and phenotypes of Enterococci isolated from broiler chickens

The objective of this study was to compare the resistance phenotypes to genotypes of enterococci from broiler and to evaluate the persistence and distribution of resistant genotypes in broiler fed bambermycin (BAM), penicillin (PEN), salinomycin (SAL), bacitracin (BAC) or a salinomycin/bacitracin combination (SALBAC) for 35 days. A total of 95 enterococci from cloacal (n=40), cecal (n=38) and litter collected on day 36 (n=17) samples were isolated weekly from day 7 to 36. All isolates were identified by API-20 Strep and their antimicrobial susceptibilities were evaluated using the Sensititre system with the commercially available NARMS’s plates of Gram positive bacteria. Whole genome sequencing (WGS) was used to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. All isolates were further characterized for hemolysin production (HEM), bile salt hydrolysis (BSH) and gelatinase (GEL) activities. Of the 95 isolates, E. faecium (n = 58) and E. faecalis (n = 24) were the most common Enterococcus species identified. Significant differences in the level of resistance for the E. faecium isolates to ciprofloxacin, macrolide, penicillin and tetracycline were observed among treatments. The bcrR, mefA and aac(6) genes were higher in BAM treatment than the other groups whereas bcrR, ermA, ermB, aphA(3) and tetL were more prevalent in PEN and BAC treatments. Overall, E. faecium isolates showed higher prevalence of antimicrobial resistance, but E. faecalis from litter also exhibited a significant level of resistance. A range of 4 to 15 different virulence genes was detected in E. faecalis. All isolates from litter but one (94.1%) showed BSH activities while 52.9% of them produced GEL. HEM activity was observed only in isolates collected on Day 7 (n= 9) and Day 14 (n= 1). This study confirmed that genetically diverse antimicrobial resistant enterococci harboring virulence factors can be promoted by the use of certain antimicrobials in feed and such enterococci could persist in broiler chickens and their litter, potentially contaminating the soil upon land application. This study underscores the need for ongoing monitoring the AMR enterococci.


September 22, 2019  |  

Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance.

The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer’s and Huntington’s disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, “On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you.” Copyright © 2018 Bohlmann et al.


September 21, 2019  |  

Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis.

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug resistant, hospital adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the first complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto proven intractable.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.