July 7, 2019  |  

Quantum yield and excitation rate of single molecules close to metallic nanostructures.

The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments.


July 7, 2019  |  

Enhancing single-molecule fluorescence with nanophotonics.

Single-molecule fluorescence spectroscopy has become an important research tool in the life sciences but a number of limitations hinder the widespread use as a standard technique. The limited dynamic concentration range is one of the major hurdles. Recent developments in the nanophotonic field promise to alleviate these restrictions to an extent that even low affinity biomolecular interactions can be studied. After motivating the need for nanophotonics we introduce the basic concepts of nanophotonic devices such as zero mode waveguides and nanoantennas. We highlight current applications and the future potential of nanophotonic approaches when combined with biological systems and single-molecule spectroscopy. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Reversible positioning of single molecules inside zero-mode waveguides.

We have developed a hybrid nanopore/zero-mode waveguide device for single-molecule fluorescence and DNA sequencing applications. The device is a freestanding solid-state membrane with sub-5 nm nanopores that reversibly delivers individual biomolecules to the base of 70 nm diameter waveguides for interrogation. Rapid and reversible molecular loading is achieved by controlling the voltage across the device. Using this device we demonstrate protein and DNA loading with efficiency that is orders of magnitude higher than diffusion-based molecular loading.


July 7, 2019  |  

Waveguide structures for efficient evanescent field coupling to zero mode waveguides

The use of waveguide structures is examined to improve the efficiency of evanescent field coupling into zero-mode waveguides. Model calculations show that waveguide excitation using diffractive structures, increases the magnitude of the evanescent electric field by an order of magnitude compared to far field excitation of the evanescent field. A more efficient excitation of fluorescent markers used in e.g. sequencing instrumentation ultimately enables real-time single molecule detection using laser systems with moderate output power.


July 7, 2019  |  

The impact of aminoglycosides on the dynamics of translation elongation.

Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC).

Resolving single fluorescent molecules in the presence of high fluorophore concentrations remains a challenge in single-molecule biophysics that limits our understanding of weak molecular interactions. Total internal reflection fluorescence (TIRF) imaging, the workhorse of single-molecule fluorescence microscopy, enables experiments at concentrations up to about 100 nM, but many biological interactions have considerably weaker affinities, and thus require at least one species to be at micromolar or higher concentration. Current alternatives to TIRF often require three-dimensional confinement, and thus can be problematic for extended substrates, such as cytoskeletal filaments. To address this challenge, we have demonstrated and applied two new single-molecule fluorescence microscopy techniques, linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC), for imaging the processive motion of molecular motors myosin V and VI along actin filaments. Both technologies will allow imaging in the presence of higher fluorophore concentrations than TIRF microscopy. They will enable new biophysical measurements of a wide range of processive molecular motors that move along filamentous tracks, such as other myosins, dynein, and kinesin. A particularly salient application of these technologies will be to examine chemomechanical coupling by directly imaging fluorescent nucleotide molecules interacting with processive motors as they traverse their actin or microtubule tracks.


July 7, 2019  |  

Coordinated conformational and compositional dynamics drive ribosome translocation.

During translation elongation, the ribosome compositional factors elongation factor G (EF-G; encoded by fusA) and tRNA alternately bind to the ribosome to direct protein synthesis and regulate the conformation of the ribosome. Here, we use single-molecule fluorescence with zero-mode waveguides to directly correlate ribosome conformation and composition during multiple rounds of elongation at high factor concentrations in Escherichia coli. Our results show that EF-G bound to GTP (EF-G-GTP) continuously samples both rotational states of the ribosome, binding with higher affinity to the rotated state. Upon successful accommodation into the rotated ribosome, the EF-G-ribosome complex evolves through several rate-limiting conformational changes and the hydrolysis of GTP, which results in a transition back to the nonrotated state and in turn drives translocation and facilitates release of both EF-G-GDP and E-site tRNA. These experiments highlight the power of tracking single-molecule conformation and composition simultaneously in real time.


July 7, 2019  |  

Heterogeneous pathways and timing of factor departure during translation initiation.

The initiation of translation establishes the reading frame for protein synthesis and is a key point of regulation. Initiation involves factor-driven assembly at a start codon of a messenger RNA of an elongation-competent 70S ribosomal particle (in bacteria) from separated 30S and 50S subunits and initiator transfer RNA. Here we establish in Escherichia coli, using direct single-molecule tracking, the timing of initiator tRNA, initiation factor 2 (IF2; encoded by infB) and 50S subunit joining during initiation. Our results show multiple pathways to initiation, with orders of arrival of tRNA and IF2 dependent on factor concentration and composition. IF2 accelerates 50S subunit joining and stabilizes the assembled 70S complex. Transition to elongation is gated by the departure of IF2 after GTP hydrolysis, allowing efficient arrival of elongator tRNAs to the second codon presented in the aminoacyl-tRNA binding site (A site). These experiments highlight the power of single-molecule approaches to delineate mechanisms in complex multicomponent systems.


July 7, 2019  |  

Real-time tRNA transit on single translating ribosomes at codon resolution.

Translation by the ribosome occurs by a complex mechanism involving the coordinated interaction of multiple nucleic acid and protein ligands. Here we use zero-mode waveguides (ZMWs) and sophisticated detection instrumentation to allow real-time observation of translation at physiologically relevant micromolar ligand concentrations. Translation at each codon is monitored by stable binding of transfer RNAs (tRNAs)-labelled with distinct fluorophores-to translating ribosomes, which allows direct detection of the identity of tRNA molecules bound to the ribosome and therefore the underlying messenger RNA (mRNA) sequence. We observe the transit of tRNAs on single translating ribosomes and determine the number of tRNA molecules simultaneously bound to the ribosome, at each codon of an mRNA molecule. Our results show that ribosomes are only briefly occupied by two tRNA molecules and that release of deacylated tRNA from the exit (E) site is uncoupled from binding of aminoacyl-tRNA site (A-site) tRNA and occurs rapidly after translocation. The methods outlined here have broad application to the study of mRNA sequences, and the mechanism and regulation of translation.


July 7, 2019  |  

Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures.

Optical nanostructures have enabled the creation of subdiffraction detection volumes for single-molecule fluorescence microscopy. Their applicability is extended by the ability to place molecules in the confined observation volume without interfering with their biological function. Here, we demonstrate that processive DNA synthesis thousands of bases in length was carried out by individual DNA polymerase molecules immobilized in the observation volumes of zero-mode waveguides (ZMWs) in high-density arrays. Selective immobilization of polymerase to the fused silica floor of the ZMW was achieved by passivation of the metal cladding surface using polyphosphonate chemistry, producing enzyme density contrasts of glass over aluminum in excess of 400:1. Yields of single-molecule occupancies of approximately 30% were obtained for a range of ZMW diameters (70-100 nm). Results presented here support the application of immobilized single DNA polymerases in ZMW arrays for long-read-length DNA sequencing.


July 7, 2019  |  

Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides.

We demonstrate the efficient synthesis of DNA with complete replacement of the four deoxyribonucleoside triphosphate (dNTP) substrates with nucleotides carrying fluorescent labels. A different, spectrally separable fluorescent dye suitable for single molecule fluorescence detection was conjugated to each of the four dNTPs via linkage to the terminal phosphate. Using these modified nucleotides, DNA synthesis by phi 29 DNA polymerase was observed to be processive for products thousands of bases in length, with labeled nucleotide affinities and DNA polymerization rates approaching unmodified dNTP levels. Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.


July 7, 2019  |  

Improved fabrication of zero-mode waveguides for single-molecule detection

Metallic subwavelength apertures can be used in epi-illumination fluorescence to achieve focal volume confinement. Because of the near field components inherent to small metallic structures, observation volumes are formed that are much smaller than the conventional diffraction limited volume attainable by high numerical aperture far field optics (circa a femtoliter). Observation volumes in the range of 10-4fl have been reported previously. Such apertures can be used for single-molecule detection at relatively high concentrations (up to 20µM) of fluorophores. Here, we present a novel fabrication of metallic subwavelength apertures in the visible range. Using a new electron beamlithography process, uniform arrays of such apertures can be manufactured efficiently in large numbers with diameters in the range of 60–100nm. The apertures were characterized by scanning electron microscopy, optical microscopy, focused ion beam cross sections/transmission electron microscopy, and fluorescence correlation spectroscopy measurements, which confirmed their geometry and optical confinement. Process throughput can be further increased using deep ultraviolet photolithography to replace electron beamlithography. This enables the production of aperture arrays in a high volume manufacturing environment.


July 7, 2019  |  

Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing.

Compared with conventional methods, single-molecule real-time (SMRT) DNA sequencing exhibits longer read lengths than conventional methods, less GC bias, and the ability to read DNA base modifications. However, reading DNA sequence from sub-nanogram quantities is impractical owing to inefficient delivery of DNA molecules into the confines of zero-mode waveguides-zeptolitre optical cavities in which DNA sequencing proceeds. Here, we show that the efficiency of voltage-induced DNA loading into waveguides equipped with nanopores at their floors is five orders of magnitude greater than existing methods. In addition, we find that DNA loading is nearly length-independent, unlike diffusive loading, which is biased towards shorter fragments. We demonstrate here loading and proof-of-principle four-colour sequence readout of a polymerase-bound 20,000-base-pair-long DNA template within seconds from a sub-nanogram input quantity, a step towards low-input DNA sequencing and mammalian epigenomic mapping of native DNA samples.


July 7, 2019  |  

Probing the translation dynamics of ribosomes using Zero-Mode Waveguides

In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Exocytotic fusion pores are composed of both lipids and proteins.

During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca(2+)-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.