July 7, 2019  |  

Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing.

Authors: Larkin, Joseph and Henley, Robert Y and Jadhav, Vivek and Korlach, Jonas and Wanunu, Meni

Compared with conventional methods, single-molecule real-time (SMRT) DNA sequencing exhibits longer read lengths than conventional methods, less GC bias, and the ability to read DNA base modifications. However, reading DNA sequence from sub-nanogram quantities is impractical owing to inefficient delivery of DNA molecules into the confines of zero-mode waveguides-zeptolitre optical cavities in which DNA sequencing proceeds. Here, we show that the efficiency of voltage-induced DNA loading into waveguides equipped with nanopores at their floors is five orders of magnitude greater than existing methods. In addition, we find that DNA loading is nearly length-independent, unlike diffusive loading, which is biased towards shorter fragments. We demonstrate here loading and proof-of-principle four-colour sequence readout of a polymerase-bound 20,000-base-pair-long DNA template within seconds from a sub-nanogram input quantity, a step towards low-input DNA sequencing and mammalian epigenomic mapping of native DNA samples.

Journal: Nature nanotechnology
DOI: 10.1038/nnano.2017.176
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.